Exemplo n.º 1
0
def test_disable_text_recog_aug_test(cfg_file):
    tmp_dir = os.path.abspath(os.path.dirname(os.path.dirname(__file__)))
    config_file = os.path.join(tmp_dir, cfg_file)

    cfg = Config.fromfile(config_file)
    test = cfg.data.test.datasets[0]

    # cfg.data.test.type is 'OCRDataset'
    cfg1 = copy.deepcopy(cfg)
    test1 = copy.deepcopy(test)
    test1.pipeline = cfg1.data.test.pipeline
    cfg1.data.test = test1
    cfg1 = disable_text_recog_aug_test(cfg1, set_types=['test'])
    assert cfg1.data.test.pipeline[1].type != 'MultiRotateAugOCR'

    # cfg.data.test.type is 'UniformConcatDataset'
    # and cfg.data.test.pipeline is list[dict]
    cfg2 = copy.deepcopy(cfg)
    test2 = copy.deepcopy(test)
    test2.pipeline = cfg2.data.test.pipeline
    cfg2.data.test.datasets = [test2]
    cfg2 = disable_text_recog_aug_test(cfg2, set_types=['test'])
    assert cfg2.data.test.pipeline[1].type != 'MultiRotateAugOCR'
    assert cfg2.data.test.datasets[0].pipeline[1].type != 'MultiRotateAugOCR'

    # cfg.data.test.type is 'ConcatDataset'
    cfg3 = copy.deepcopy(cfg)
    test3 = copy.deepcopy(test)
    test3.pipeline = cfg3.data.test.pipeline
    cfg3.data.test = Config(dict(type='ConcatDataset', datasets=[test3]))
    cfg3 = disable_text_recog_aug_test(cfg3, set_types=['test'])
    assert cfg3.data.test.datasets[0].pipeline[1].type != 'MultiRotateAugOCR'

    # cfg.data.test.type is 'UniformConcatDataset'
    # and cfg.data.test.pipeline is list[list[dict]]
    cfg4 = copy.deepcopy(cfg)
    test4 = copy.deepcopy(test)
    test4.pipeline = cfg4.data.test.pipeline
    cfg4.data.test.datasets = [[test4], [test]]
    cfg4.data.test.pipeline = [
        cfg4.data.test.pipeline, cfg4.data.test.pipeline
    ]
    cfg4 = disable_text_recog_aug_test(cfg4, set_types=['test'])
    assert cfg4.data.test.datasets[0][0].pipeline[1].type != \
        'MultiRotateAugOCR'

    # cfg.data.test.type is 'UniformConcatDataset'
    # and cfg.data.test.pipeline is None
    cfg5 = copy.deepcopy(cfg)
    test5 = copy.deepcopy(test)
    test5.pipeline = copy.deepcopy(cfg5.data.test.pipeline)
    cfg5.data.test.datasets = [test5]
    cfg5.data.test.pipeline = None
    cfg5 = disable_text_recog_aug_test(cfg5, set_types=['test'])
    assert cfg5.data.test.datasets[0].pipeline[1].type != 'MultiRotateAugOCR'
Exemplo n.º 2
0
def main():
    args = parse_args()

    assert (
        args.out or args.eval or args.format_only or args.show
        or args.show_dir), (
            'Please specify at least one operation (save/eval/format/show the '
            'results / save the results) with the argument "--out", "--eval"'
            ', "--format-only", "--show" or "--show-dir".')

    if args.eval and args.format_only:
        raise ValueError('--eval and --format_only cannot be both specified.')

    if args.out is not None and not args.out.endswith(('.pkl', '.pickle')):
        raise ValueError('The output file must be a pkl file.')

    cfg = Config.fromfile(args.config)
    if args.cfg_options is not None:
        cfg.merge_from_dict(args.cfg_options)
    setup_multi_processes(cfg)

    # set cudnn_benchmark
    if cfg.get('cudnn_benchmark', False):
        torch.backends.cudnn.benchmark = True
    if cfg.model.get('pretrained'):
        cfg.model.pretrained = None
    if cfg.model.get('neck'):
        if isinstance(cfg.model.neck, list):
            for neck_cfg in cfg.model.neck:
                if neck_cfg.get('rfp_backbone'):
                    if neck_cfg.rfp_backbone.get('pretrained'):
                        neck_cfg.rfp_backbone.pretrained = None
        elif cfg.model.neck.get('rfp_backbone'):
            if cfg.model.neck.rfp_backbone.get('pretrained'):
                cfg.model.neck.rfp_backbone.pretrained = None

    # in case the test dataset is concatenated
    samples_per_gpu = (cfg.data.get('test_dataloader', {})).get(
        'samples_per_gpu', cfg.data.get('samples_per_gpu', 1))
    if samples_per_gpu > 1:
        cfg = disable_text_recog_aug_test(cfg)
        cfg = replace_image_to_tensor(cfg)

    # init distributed env first, since logger depends on the dist info.
    if args.launcher == 'none':
        cfg.gpu_ids = [args.gpu_id]
        distributed = False
    else:
        distributed = True
        init_dist(args.launcher, **cfg.dist_params)

    # build the dataloader
    dataset = build_dataset(cfg.data.test, dict(test_mode=True))
    # step 1: give default values and override (if exist) from cfg.data
    default_loader_cfg = {
        **dict(seed=cfg.get('seed'), drop_last=False, dist=distributed),
        **({} if torch.__version__ != 'parrots' else dict(
               prefetch_num=2,
               pin_memory=False,
           ))
    }
    default_loader_cfg.update({
        k: v
        for k, v in cfg.data.items() if k not in [
            'train', 'val', 'test', 'train_dataloader', 'val_dataloader',
            'test_dataloader'
        ]
    })
    test_loader_cfg = {
        **default_loader_cfg,
        **dict(shuffle=False, drop_last=False),
        **cfg.data.get('test_dataloader', {}),
        **dict(samples_per_gpu=samples_per_gpu)
    }

    data_loader = build_dataloader(dataset, **test_loader_cfg)

    # build the model and load checkpoint
    cfg.model.train_cfg = None
    model = build_detector(cfg.model, test_cfg=cfg.get('test_cfg'))
    model = revert_sync_batchnorm(model)
    fp16_cfg = cfg.get('fp16', None)
    if fp16_cfg is not None:
        wrap_fp16_model(model)
    load_checkpoint(model, args.checkpoint, map_location='cpu')
    if args.fuse_conv_bn:
        model = fuse_conv_bn(model)

    if not distributed:
        model = MMDataParallel(model, device_ids=cfg.gpu_ids)
        is_kie = cfg.model.type in ['SDMGR']
        outputs = single_gpu_test(model, data_loader, args.show, args.show_dir,
                                  is_kie, args.show_score_thr)
    else:
        model = MMDistributedDataParallel(
            model.cuda(),
            device_ids=[torch.cuda.current_device()],
            broadcast_buffers=False)
        outputs = multi_gpu_test(model, data_loader, args.tmpdir,
                                 args.gpu_collect)

    rank, _ = get_dist_info()
    if rank == 0:
        if args.out:
            print(f'\nwriting results to {args.out}')
            mmcv.dump(outputs, args.out)
        kwargs = {} if args.eval_options is None else args.eval_options
        if args.format_only:
            dataset.format_results(outputs, **kwargs)
        if args.eval:
            eval_kwargs = cfg.get('evaluation', {}).copy()
            # hard-code way to remove EvalHook args
            for key in [
                    'interval', 'tmpdir', 'start', 'gpu_collect', 'save_best',
                    'rule'
            ]:
                eval_kwargs.pop(key, None)
            eval_kwargs.update(dict(metric=args.eval, **kwargs))
            print(dataset.evaluate(outputs, **eval_kwargs))
Exemplo n.º 3
0
def train_detector(model,
                   dataset,
                   cfg,
                   distributed=False,
                   validate=False,
                   timestamp=None,
                   meta=None):
    logger = get_root_logger(cfg.log_level)

    # prepare data loaders
    dataset = dataset if isinstance(dataset, (list, tuple)) else [dataset]
    # step 1: give default values and override (if exist) from cfg.data
    loader_cfg = {
        **dict(seed=cfg.get('seed'),
               drop_last=False,
               dist=distributed,
               num_gpus=len(cfg.gpu_ids)),
        **({} if torch.__version__ != 'parrots' else dict(
               prefetch_num=2,
               pin_memory=False,
           )),
        **dict((k, cfg.data[k]) for k in [
                   'samples_per_gpu',
                   'workers_per_gpu',
                   'shuffle',
                   'seed',
                   'drop_last',
                   'prefetch_num',
                   'pin_memory',
                   'persistent_workers',
               ] if k in cfg.data)
    }

    # step 2: cfg.data.train_dataloader has highest priority
    train_loader_cfg = dict(loader_cfg, **cfg.data.get('train_dataloader', {}))

    data_loaders = [build_dataloader(ds, **train_loader_cfg) for ds in dataset]

    # put model on gpus
    if distributed:
        find_unused_parameters = cfg.get('find_unused_parameters', False)
        # Sets the `find_unused_parameters` parameter in
        # torch.nn.parallel.DistributedDataParallel
        model = MMDistributedDataParallel(
            model.cuda(),
            device_ids=[torch.cuda.current_device()],
            broadcast_buffers=False,
            find_unused_parameters=find_unused_parameters)
    else:
        if not torch.cuda.is_available():
            assert digit_version(mmcv.__version__) >= digit_version('1.4.4'), \
                'Please use MMCV >= 1.4.4 for CPU training!'
        model = MMDataParallel(model, device_ids=cfg.gpu_ids)

    # build runner
    optimizer = build_optimizer(model, cfg.optimizer)

    if 'runner' not in cfg:
        cfg.runner = {
            'type': 'EpochBasedRunner',
            'max_epochs': cfg.total_epochs
        }
        warnings.warn(
            'config is now expected to have a `runner` section, '
            'please set `runner` in your config.', UserWarning)
    else:
        if 'total_epochs' in cfg:
            assert cfg.total_epochs == cfg.runner.max_epochs

    runner = build_runner(cfg.runner,
                          default_args=dict(model=model,
                                            optimizer=optimizer,
                                            work_dir=cfg.work_dir,
                                            logger=logger,
                                            meta=meta))

    # an ugly workaround to make .log and .log.json filenames the same
    runner.timestamp = timestamp

    # fp16 setting
    fp16_cfg = cfg.get('fp16', None)
    if fp16_cfg is not None:
        optimizer_config = Fp16OptimizerHook(**cfg.optimizer_config,
                                             **fp16_cfg,
                                             distributed=distributed)
    elif distributed and 'type' not in cfg.optimizer_config:
        optimizer_config = OptimizerHook(**cfg.optimizer_config)
    else:
        optimizer_config = cfg.optimizer_config

    # register hooks
    runner.register_training_hooks(cfg.lr_config,
                                   optimizer_config,
                                   cfg.checkpoint_config,
                                   cfg.log_config,
                                   cfg.get('momentum_config', None),
                                   custom_hooks_config=cfg.get(
                                       'custom_hooks', None))
    if distributed:
        if isinstance(runner, EpochBasedRunner):
            runner.register_hook(DistSamplerSeedHook())

    # register eval hooks
    if validate:
        val_samples_per_gpu = (cfg.data.get('val_dataloader', {})).get(
            'samples_per_gpu', cfg.data.get('samples_per_gpu', 1))
        if val_samples_per_gpu > 1:
            # Support batch_size > 1 in test for text recognition
            # by disable MultiRotateAugOCR since it is useless for most case
            cfg = disable_text_recog_aug_test(cfg)
            cfg = replace_image_to_tensor(cfg)

        val_dataset = build_dataset(cfg.data.val, dict(test_mode=True))

        val_loader_cfg = {
            **loader_cfg,
            **dict(shuffle=False, drop_last=False),
            **cfg.data.get('val_dataloader', {}),
            **dict(samples_per_gpu=val_samples_per_gpu)
        }

        val_dataloader = build_dataloader(val_dataset, **val_loader_cfg)

        eval_cfg = cfg.get('evaluation', {})
        eval_cfg['by_epoch'] = cfg.runner['type'] != 'IterBasedRunner'
        eval_hook = DistEvalHook if distributed else EvalHook
        runner.register_hook(eval_hook(val_dataloader, **eval_cfg))

    if cfg.resume_from:
        runner.resume(cfg.resume_from)
    elif cfg.load_from:
        runner.load_checkpoint(cfg.load_from)
    runner.run(data_loaders, cfg.workflow)