Exemplo n.º 1
0
def test_collect_env():
    env_info = collect_env()

    assert env_info['PyTorch'] == torch.__version__
    assert env_info['TorchVision'] == torchvision.__version__
    assert env_info['OpenCV'] == cv2.__version__
    assert env_info['MMCV'] == mmcv.__version__
    assert env_info['MMPose'] == mmpose.__version__
Exemplo n.º 2
0
def test_collect_env():
    env_info = collect_env()
    target_keys = [
        'sys.platform', 'Python', 'CUDA available', 'GCC', 'PyTorch',
        'PyTorch compiling details', 'TorchVision', 'OpenCV', 'MMCV', 'MMPose'
    ]
    cuda_available = torch.cuda.is_available()
    if cuda_available:
        cuda_keys = ['CUDA_HOME', 'NVCC']
        devices = defaultdict(list)
        devices_dict = dict()
        for k in range(torch.cuda.device_count()):
            devices[torch.cuda.get_device_name(k)].append(str(k))
        for name, devids in devices.items():
            devices_dict['GPU ' + ','.join(devids)] = name
            cuda_keys.append('GPU ' + ','.join(devids))
        target_keys.extend(cuda_keys)

    assert set(env_info.keys()) == set(target_keys)
    assert env_info['sys.platform'] == sys.platform
    assert env_info['Python'] == sys.version.replace('\n', '')
    assert env_info['CUDA available'] == cuda_available
    if cuda_available:
        assert env_info['CUDA_HOME'] == CUDA_HOME
        if CUDA_HOME is not None and osp.isdir(CUDA_HOME):
            try:
                nvcc = osp.join(CUDA_HOME, 'bin/nvcc')
                nvcc = subprocess.check_output(
                    '"{}" -V | tail -n1'.format(nvcc), shell=True)
                nvcc = nvcc.decode('utf-8').strip()
            except subprocess.SubprocessError:
                nvcc = 'Not Available'
            assert env_info['NVCC'] == nvcc

        for k, v in devices_dict.items():
            assert env_info[k] == v

    gcc = subprocess.check_output('gcc --version | head -n1', shell=True)
    gcc = gcc.decode('utf-8').strip()
    assert env_info['GCC'] == gcc

    assert env_info['PyTorch'] == torch.__version__
    assert env_info['PyTorch compiling details'] == get_build_config()

    assert env_info['TorchVision'] == torchvision.__version__

    assert env_info['OpenCV'] == cv2.__version__

    assert env_info['MMCV'] == mmcv.__version__
    assert env_info['MMPose'] == mmpose.__version__
Exemplo n.º 3
0
def main():
    args = parse_args()
    cfg = Config.fromfile(args.config)
    if args.options is not None:
        cfg.merge_from_dict(args.options)
    # set cudnn_benchmark
    if cfg.get('cudnn_benchmark', False):
        torch.backends.cudnn.benchmark = True
    # work_dir is determined in this priority: CLI > segment in file > filename
    if args.work_dir is not None:
        # update configs according to CLI args if args.work_dir is not None
        cfg.work_dir = args.work_dir
    elif cfg.get('work_dir', None) is None:
        # use config filename as default work_dir if cfg.work_dir is None
        cfg.work_dir = osp.join('./work_dirs',
                                osp.splitext(osp.basename(args.config))[0])
    if args.resume_from is not None:
        cfg.resume_from = args.resume_from
    if args.gpu_ids is not None:
        cfg.gpu_ids = args.gpu_ids
    else:
        cfg.gpu_ids = range(1) if args.gpus is None else range(args.gpus)

    if args.autoscale_lr:
        # apply the linear scaling rule (https://arxiv.org/abs/1706.02677)
        cfg.optimizer['lr'] = cfg.optimizer['lr'] * len(cfg.gpu_ids) / 8

    # init distributed env first, since logger depends on the dist info.
    if args.launcher == 'none':
        distributed = False
    else:
        distributed = True
        init_dist(args.launcher, **cfg.dist_params)

    # create work_dir
    mmcv.mkdir_or_exist(osp.abspath(cfg.work_dir))
    # init the logger before other steps
    timestamp = time.strftime('%Y%m%d_%H%M%S', time.localtime())
    log_file = osp.join(cfg.work_dir, f'{timestamp}.log')
    logger = get_root_logger(log_file=log_file, log_level=cfg.log_level)

    # init the meta dict to record some important information such as
    # environment info and seed, which will be logged
    meta = dict()
    # log env info
    env_info_dict = collect_env()
    env_info = '\n'.join([(f'{k}: {v}') for k, v in env_info_dict.items()])
    dash_line = '-' * 60 + '\n'
    logger.info('Environment info:\n' + dash_line + env_info + '\n' +
                dash_line)
    meta['env_info'] = env_info

    # log some basic info
    logger.info(f'Distributed training: {distributed}')
    logger.info(f'Config:\n{cfg.pretty_text}')

    # set random seeds
    if args.seed is not None:
        logger.info(f'Set random seed to {args.seed}, '
                    f'deterministic: {args.deterministic}')
        set_random_seed(args.seed, deterministic=args.deterministic)
    cfg.seed = args.seed
    meta['seed'] = args.seed

    model = build_posenet(cfg.model)
    datasets = [build_dataset(cfg.data.train)]

    if len(cfg.workflow) == 2:
        val_dataset = copy.deepcopy(cfg.data.val)
        val_dataset.pipeline = cfg.data.train.pipeline
        datasets.append(build_dataset(val_dataset))

    if cfg.checkpoint_config is not None:
        # save mmpose version, config file content
        # checkpoints as meta data
        cfg.checkpoint_config.meta = dict(
            mmpose_version=__version__ + get_git_hash(digits=7),
            config=cfg.pretty_text,
        )
    train_model(
        model,
        datasets,
        cfg,
        distributed=distributed,
        validate=(not args.no_validate),
        timestamp=timestamp,
        meta=meta)