Exemplo n.º 1
0
def _calculate_chpi_positions(raw,
                              t_step_min=0.01,
                              t_step_max=1.,
                              t_window='auto',
                              too_close='raise',
                              dist_limit=0.005,
                              gof_limit=0.98,
                              ext_order=1,
                              verbose=None):
    chpi_amplitudes = compute_chpi_amplitudes(raw,
                                              t_step_min=t_step_min,
                                              t_window=t_window,
                                              ext_order=ext_order,
                                              verbose=verbose)
    chpi_locs = compute_chpi_locs(raw.info,
                                  chpi_amplitudes,
                                  t_step_max=t_step_max,
                                  too_close=too_close,
                                  verbose=verbose)
    head_pos = compute_head_pos(raw.info,
                                chpi_locs,
                                dist_limit=dist_limit,
                                gof_limit=gof_limit,
                                verbose=verbose)
    return head_pos
Exemplo n.º 2
0
def test_simulate_raw_chpi():
    """Test simulation of raw data with cHPI."""
    raw = read_raw_fif(raw_chpi_fname, allow_maxshield='yes')
    picks = np.arange(len(raw.ch_names))
    picks = np.setdiff1d(picks, pick_types(raw.info, meg=True, eeg=True)[::4])
    raw.load_data().pick_channels([raw.ch_names[pick] for pick in picks])
    raw.info.normalize_proj()
    sphere = make_sphere_model('auto', 'auto', raw.info)
    # make sparse spherical source space
    sphere_vol = tuple(sphere['r0']) + (sphere.radius, )
    src = setup_volume_source_space(sphere=sphere_vol,
                                    pos=70.,
                                    sphere_units='m')
    stcs = [_make_stc(raw, src)] * 15
    # simulate data with cHPI on
    raw_sim = simulate_raw(raw.info,
                           stcs,
                           None,
                           src,
                           sphere,
                           head_pos=pos_fname,
                           interp='zero',
                           first_samp=raw.first_samp)
    # need to trim extra samples off this one
    raw_chpi = add_chpi(raw_sim.copy(), head_pos=pos_fname, interp='zero')
    # test cHPI indication
    hpi_freqs, hpi_pick, hpi_ons = _get_hpi_info(raw.info)
    assert_allclose(raw_sim[hpi_pick][0], 0.)
    assert_allclose(raw_chpi[hpi_pick][0], hpi_ons.sum())
    # test that the cHPI signals make some reasonable values
    picks_meg = pick_types(raw.info, meg=True, eeg=False)
    picks_eeg = pick_types(raw.info, meg=False, eeg=True)

    for picks in [picks_meg[:3], picks_eeg[:3]]:
        psd_sim, freqs_sim = psd_welch(raw_sim, picks=picks)
        psd_chpi, freqs_chpi = psd_welch(raw_chpi, picks=picks)

        assert_array_equal(freqs_sim, freqs_chpi)
        freq_idx = np.sort(
            [np.argmin(np.abs(freqs_sim - f)) for f in hpi_freqs])
        if picks is picks_meg:
            assert (psd_chpi[:, freq_idx] > 100 * psd_sim[:, freq_idx]).all()
        else:
            assert_allclose(psd_sim, psd_chpi, atol=1e-20)

    # test localization based on cHPI information
    chpi_amplitudes = compute_chpi_amplitudes(raw, t_step_min=10.)
    coil_locs = compute_chpi_locs(raw.info, chpi_amplitudes)
    quats_sim = compute_head_pos(raw_chpi.info, coil_locs)
    quats = read_head_pos(pos_fname)
    _assert_quats(quats,
                  quats_sim,
                  dist_tol=5e-3,
                  angle_tol=3.5,
                  vel_atol=0.03)  # velicity huge because of t_step_min above
Exemplo n.º 3
0
def test_calculate_head_pos_kit():
    """Test calculation of head position using KIT data."""
    raw = read_raw_kit(con_fname, mrk_fname, elp_fname, hsp_fname)
    assert len(raw.info['hpi_results']) == 1
    chpi_locs = extract_chpi_locs_kit(raw)
    assert chpi_locs['rrs'].shape == (2, 5, 3)
    assert_array_less(chpi_locs['gofs'], 1.)
    assert_array_less(0.98, chpi_locs['gofs'])
    quats = compute_head_pos(raw.info, chpi_locs)
    assert quats.shape == (2, 10)
    # plotting works
    plot_head_positions(quats, info=raw.info)
    raw_berlin = read_raw_kit(berlin_fname)
    assert_allclose(raw_berlin.info['dev_head_t']['trans'], np.eye(4))
    assert len(raw_berlin.info['hpi_results']) == 0
    with pytest.raises(ValueError, match='Invalid value'):
        extract_chpi_locs_kit(raw_berlin)
    with pytest.raises(RuntimeError, match='not find appropriate'):
        extract_chpi_locs_kit(raw_berlin, 'STI 014')
    with pytest.raises(RuntimeError, match='no initial cHPI'):
        compute_head_pos(raw_berlin.info, chpi_locs)
Exemplo n.º 4
0
def test_calculate_head_pos_ctf():
    """Test extracting of cHPI positions from CTF data."""
    raw = read_raw_ctf(ctf_chpi_fname)
    chpi_locs = extract_chpi_locs_ctf(raw)
    quats = compute_head_pos(raw.info, chpi_locs)
    mc_quats = read_head_pos(ctf_chpi_pos_fname)
    mc_quats[:, 9] /= 10000  # had old factor in there twice somehow...
    _assert_quats(quats, mc_quats, dist_tol=0.004, angle_tol=2.5, err_rtol=1.,
                  vel_atol=7e-3)  # 7 mm/s
    plot_head_positions(quats, info=raw.info)

    raw = read_raw_fif(ctf_fname)
    with pytest.raises(RuntimeError, match='Could not find'):
        extract_chpi_locs_ctf(raw)
Exemplo n.º 5
0
def test_calculate_chpi_coil_locs_artemis():
    """Test computing just cHPI locations."""
    raw = read_raw_fif(chpi_fif_fname, allow_maxshield='yes', preload=True)
    # This is a little hack (aliasing while decimating) to make it much faster
    # for testing purposes only. We can relax this later if we find it breaks
    # something.
    raw_dec = _decimate_chpi(raw, 15)
    times, cHPI_digs = _calculate_chpi_coil_locs(raw_dec, verbose='debug')

    # spot check
    assert_allclose(times[0], 9., atol=1e-2)
    assert_allclose(cHPI_digs[0][2]['r'],
                    [-0.01937833, 0.00346804, 0.06331209], atol=1e-3)
    assert_allclose(cHPI_digs[0][2]['gof'], 0.9957, atol=1e-3)

    assert_allclose(cHPI_digs[0][4]['r'],
                    [-0.0655, 0.0755, 0.0004], atol=3e-3)
    assert_allclose(cHPI_digs[0][4]['gof'], 0.9323, atol=1e-3)
    _check_dists(raw.info, cHPI_digs[0], n_bad=1)

    # test on 5k artemis data
    raw = read_raw_artemis123(art_fname, preload=True)
    times, cHPI_digs = _calculate_chpi_coil_locs(raw, verbose='debug')

    assert len(np.setdiff1d(times, raw.times + raw.first_time)) == 0
    # Should be somewhere around 1.5 sec, depending on coil GOF values
    # around 0.98 it can change
    assert_allclose(times[5], 1.5, atol=2e-1)
    assert_allclose(cHPI_digs[5][0]['gof'], 0.995, atol=5e-3)
    assert_allclose(cHPI_digs[5][0]['r'],
                    [-0.0157, 0.0655, 0.0018], atol=1e-3)
    _check_dists(raw.info, cHPI_digs[5])
    coil_amplitudes = compute_chpi_amplitudes(raw)
    with pytest.raises(ValueError, match='too_close'):
        compute_chpi_locs(raw.info, coil_amplitudes, too_close='foo')
    # ensure values are in a reasonable range
    amps = np.linalg.norm(coil_amplitudes['slopes'], axis=-1)
    amps /= coil_amplitudes['slopes'].shape[-1]
    assert amps.shape == (len(coil_amplitudes['times']), 3)
    assert_array_less(amps, 1e-11)
    assert_array_less(1e-13, amps)
    # with nan amplitudes (i.e., cHPI off) it should return an empty array,
    # but still one that is 3D
    coil_amplitudes['slopes'].fill(np.nan)
    chpi_locs = compute_chpi_locs(raw.info, coil_amplitudes)
    assert chpi_locs['rrs'].shape == (0, 3, 3)
    pos = compute_head_pos(raw.info, chpi_locs)
    assert pos.shape == (0, 10)
Exemplo n.º 6
0
def test_initial_fit_redo():
    """Test that initial fits can be redone based on moments."""
    raw = read_raw_fif(chpi_fif_fname, allow_maxshield='yes')
    slopes = np.array(
        [[c['slopes'] for c in raw.info['hpi_meas'][0]['hpi_coils']]])
    amps = np.linalg.norm(slopes, axis=-1)
    amps /= slopes.shape[-1]
    assert_array_less(amps, 5e-11)
    assert_array_less(1e-12, amps)
    proj, _, _ = _setup_ext_proj(raw.info, ext_order=1)
    chpi_amplitudes = dict(times=np.zeros(1), slopes=slopes, proj=proj)
    chpi_locs = compute_chpi_locs(raw.info, chpi_amplitudes)

    # check GOF
    coil_gof = raw.info['hpi_results'][0]['goodness']
    assert_allclose(chpi_locs['gofs'][0], coil_gof, atol=0.3)  # XXX not good

    # check moment
    # XXX our forward and theirs differ by an extra mult by _MAG_FACTOR
    coil_moment = raw.info['hpi_results'][0]['moments'] / _MAG_FACTOR
    py_moment = chpi_locs['moments'][0]
    coil_amp = np.linalg.norm(coil_moment, axis=-1, keepdims=True)
    py_amp = np.linalg.norm(py_moment, axis=-1, keepdims=True)
    assert_allclose(coil_amp, py_amp, rtol=0.2)
    coil_ori = coil_moment / coil_amp
    py_ori = py_moment / py_amp
    angles = np.rad2deg(np.arccos(np.abs(np.sum(coil_ori * py_ori, axis=1))))
    assert_array_less(angles, 20)

    # check resulting dev_head_t
    head_pos = compute_head_pos(raw.info, chpi_locs)
    assert head_pos.shape == (1, 10)
    nm_pos = raw.info['dev_head_t']['trans']
    dist = 1000 * np.linalg.norm(nm_pos[:3, 3] - head_pos[0, 4:7])
    assert 0.1 < dist < 2
    angle = np.rad2deg(
        _angle_between_quats(rot_to_quat(nm_pos[:3, :3]), head_pos[0, 1:4]))
    assert 0.1 < angle < 2
    gof = head_pos[0, 7]
    assert_allclose(gof, 0.9999, atol=1e-4)
Exemplo n.º 7
0
def calculate_head_pos_ctf(raw):
    """Wrap to facilitate API change."""
    chpi_locs = extract_chpi_locs_ctf(raw)
    return compute_head_pos(raw.info, chpi_locs)
Exemplo n.º 8
0
def compute_head_position(src: Path) -> np.ndarray:
    raw = read_raw_fif(src)
    chpi_ampl = compute_chpi_amplitudes(raw)
    chpi_locs = compute_chpi_locs(raw.info, chpi_ampl)
    return compute_head_pos(raw.info, chpi_locs)