Exemplo n.º 1
0
def _get_version(name):
    """Get a dataset version."""
    from mne.datasets._fetch import fetch_dataset

    if not has_dataset(name):
        return None
    dataset_params = MNE_DATASETS[name]
    dataset_params['dataset_name'] = name
    config_key = MNE_DATASETS[name]['config_key']

    # get download path for specific dataset
    path = _get_path(path=None, key=config_key, name=name)

    return fetch_dataset(dataset_params, path=path, return_version=True)[1]
Exemplo n.º 2
0
def _download_mne_dataset(name,
                          processor,
                          path,
                          force_update,
                          update_path,
                          download,
                          accept=False):
    """Aux function for downloading internal MNE datasets."""
    from mne.datasets._fetch import fetch_dataset

    # import pooch library for handling the dataset downloading
    pooch = _soft_import('pooch', 'dataset downloading', strict=True)
    dataset_params = MNE_DATASETS[name]
    dataset_params['dataset_name'] = name
    config_key = MNE_DATASETS[name]['config_key']
    folder_name = MNE_DATASETS[name]['folder_name']

    # get download path for specific dataset
    path = _get_path(path=path, key=config_key, name=name)

    # instantiate processor that unzips file
    if processor == 'nested_untar':
        processor_ = pooch.Untar(extract_dir=op.join(path, folder_name))
    elif processor == 'nested_unzip':
        processor_ = pooch.Unzip(extract_dir=op.join(path, folder_name))
    else:
        processor_ = processor

    # handle case of multiple sub-datasets with different urls
    if name == 'visual_92_categories':
        dataset_params = []
        for name in ['visual_92_categories_1', 'visual_92_categories_2']:
            this_dataset = MNE_DATASETS[name]
            this_dataset['dataset_name'] = name
            dataset_params.append(this_dataset)

    return fetch_dataset(dataset_params=dataset_params,
                         processor=processor_,
                         path=path,
                         force_update=force_update,
                         update_path=update_path,
                         download=download,
                         accept=accept)
Exemplo n.º 3
0
def has_dataset(name):
    """Check for presence of a dataset.

    Parameters
    ----------
    name : str | dict
        The dataset to check. Strings refer to one of the supported datasets
        listed :ref:`here <datasets>`. A :class:`dict` can be used to check for
        user-defined datasets (see the Notes section of :func:`fetch_dataset`),
        and must contain keys ``dataset_name``, ``archive_name``, ``url``,
        ``folder_name``, ``hash``.

    Returns
    -------
    has : bool
        True if the dataset is present.
    """
    from mne.datasets._fetch import fetch_dataset

    if isinstance(name, dict):
        dataset_name = name['dataset_name']
        dataset_params = name
    else:
        dataset_name = 'spm' if name == 'spm_face' else name
        dataset_params = MNE_DATASETS[dataset_name]
        dataset_params['dataset_name'] = dataset_name

    config_key = dataset_params['config_key']

    # get download path for specific dataset
    path = _get_path(path=None, key=config_key, name=dataset_name)

    dp = fetch_dataset(dataset_params,
                       path=path,
                       download=False,
                       check_version=False)
    if dataset_name.startswith('bst_'):
        check = dataset_name
    else:
        check = MNE_DATASETS[dataset_name]['folder_name']
    return dp.endswith(check)