Exemplo n.º 1
0
 def devp_fit_decoding_sensor_space(self, **kwargs):
     from mne.decoding import (SlidingEstimator, GeneralizingEstimator,
                               Scaler, cross_val_multiscore, LinearModel,
                               get_coef, Vectorizer, CSP)
     from devp_basicio import save_pkl, load_pkl
     kwargs.update(dict(name=f'model_{kwargs["target_event"]}'))
     model_f = self.get_decoding_model_pkl(**kwargs)
     kwargs.update(dict(name=f'score_{kwargs["target_event"]}'))
     scores_f = self.get_decoding_score_pkl(**kwargs)
     if Path(model_f).exists() and Path(scores_f).exists():
         time_decod = load_pkl(model_f, logger=self.logger)
         scores = load_pkl(scores_f, logger=self.logger)
         if kwargs['retrain'] == False:
             return scores, None
     X, y, epochs = self.devp_get_data_sensor_space(**kwargs)
     time_decod = self.devp_estimator(**kwargs)
     time_decod.fit(X, y)
     save_pkl(time_decod, model_f, logger=self.logger)
     scores = cross_val_multiscore(time_decod, X, y, cv=12, n_jobs=6)
     scores = np.mean(scores, axis=0)
     save_pkl(scores, scores_f, logger=self.logger)
     # self.plot_auc(epochs, scores, **kwargs)
     # coef = get_coef(time_decod, 'patterns_', inverse_transform=True)
     # self.plot_decoding_joint(coef, epochs, **kwargs)
     return scores, epochs
def NeuralNet(X_train, y_train, X_test, y_test, scorer, predict_mode, params):
    " Neural Network estimator "

    # Model
    model = MLPClassifier(solver='lbfgs', alpha=1e-5, hidden_layer_sizes=(3,), random_state=1)

    # Cross-validation scheme
    cv = StratifiedKFold(n_splits=4, random_state=0, shuffle=True)

    # Scaler
    scaler = StandardScaler()

    # Pipeline
    clf = make_pipeline(scaler, model)

    # Define scorer
    if scorer is 'scorer_auc':
        scorer = 'roc_auc'
    elif scorer is 'accuracy':
        scorer = None
    else:
        print('using accuracy as the scorer')

    # Learning and scoring
    time_gen = GeneralizingEstimator(clf, n_jobs=2, scoring=scorer)
    scores = cross_val_multiscore(time_gen, X_train, y_train, cv=cv, n_jobs=2)

    return scores
Exemplo n.º 3
0
def logreg_timedecoding(epochs, numcv=4, jobs=1):
    """
    Logistic regression over sensors. Returns Evoked array containing coefficients and ROC.
    Code snippets stolen from:
    https://martinos.org/mne/stable/auto_tutorials/plot_sensors_decoding.html
    """

    X = epochs.get_data()  # MEG signals: n_epochs, n_channels, n_times
    X = X.astype(float)
    y = epochs.events[:, 2]  # targets

    # setup and run the decoder

    clf = make_pipeline(StandardScaler(), LinearModel(LogisticRegression()))

    time_decod = SlidingEstimator(clf, scoring='roc_auc',
                                  n_jobs=jobs)  #scoring='roc_auc',

    scores = cross_val_multiscore(time_decod, X, y, cv=numcv, n_jobs=jobs)

    # Mean scores across cross-validation splits
    scores = np.mean(scores, axis=0)

    #
    time_decod = SlidingEstimator(clf, scoring='roc_auc', n_jobs=jobs)
    time_decod.fit(X, y)

    coef = get_coef(time_decod, 'patterns_', inverse_transform=True)

    evoked = mne.EvokedArray(coef, epochs.info, tmin=epochs.times[0])
    evoked.roc_auc = scores

    return evoked
def LogisticRegression(X_train, y_train, X_test, y_test, scorer, predict_mode, params):
    " Logistic Regression within or across conditions "

    # Model
    model = linear_model.LogisticRegression(class_weight='balanced')

    # Cross-validation scheme
    cv = StratifiedKFold(n_splits=4, random_state=0, shuffle=True)

    # Scaler
    scaler = StandardScaler()

    # Pipeline
    clf = make_pipeline(scaler, model)

    # Define scorer
    if scorer is 'scorer_auc':
        scorer = 'roc_auc'
    elif scorer is 'accuracy':
        scorer = None
    else:
        print('using accuracy as the scorer')

    # Learning and scoring
    time_gen = GeneralizingEstimator(clf, n_jobs=2, scoring=scorer)
    scores = cross_val_multiscore(time_gen, X_train, y_train, cv=cv, n_jobs=2)

    return scores
def run_time_decoding(subject, condition1, condition2, session=None):
    print("Processing subject: %s (%s vs %s)"
          % (subject, condition1, condition2))

    # Construct the search path for the data file. `sub` is mandatory
    subject_path = op.join('sub-{}'.format(subject))
    # `session` is optional
    if session is not None:
        subject_path = op.join(subject_path, 'ses-{}'.format(session))

    subject_path = op.join(subject_path, config.kind)

    bids_basename = make_bids_basename(subject=subject,
                                       session=session,
                                       task=config.task,
                                       acquisition=config.acq,
                                       run=None,
                                       processing=config.proc,
                                       recording=config.rec,
                                       space=config.space
                                       )

    fpath_deriv = op.join(config.bids_root, 'derivatives',
                          config.PIPELINE_NAME, subject_path)
    fname_in = \
        op.join(fpath_deriv, bids_basename + '-epo.fif')

    epochs = mne.read_epochs(fname_in)

    # We define the epochs and the labels
    epochs = mne.concatenate_epochs([epochs[condition1],
                                     epochs[condition2]])
    epochs.apply_baseline()

    # Get the data and labels
    X = epochs.get_data()
    n_cond1 = len(epochs[condition1])
    n_cond2 = len(epochs[condition2])
    y = np.r_[np.ones(n_cond1), np.zeros(n_cond2)]

    # Use AUC because chance level is same regardless of the class balance
    se = SlidingEstimator(
        make_pipeline(StandardScaler(),
                      LogisticRegression(solver='liblinear',
                                         random_state=config.random_state)),
        scoring=config.decoding_metric, n_jobs=config.N_JOBS)
    cv = StratifiedKFold(random_state=config.random_state,
                         n_splits=config.decoding_n_splits)
    scores = cross_val_multiscore(se, X=X, y=y, cv=cv)

    # let's save the scores now
    a_vs_b = '%s_vs_%s' % (condition1, condition2)
    a_vs_b = a_vs_b.replace(op.sep, '')
    fname_td = op.join(config.bids_root, 'derivatives', config.PIPELINE_NAME,
                       '%s_%s_%s_%s.mat' %
                       (subject, config.study_name, a_vs_b,
                        config.decoding_metric))
    savemat(fname_td, {'scores': scores, 'times': epochs.times})
def run_time_decoding(subject_id, condition1, condition2):
    print("processing subject: %s (%s vs %s)" %
          (subject_id, condition1, condition2))

    subject = "S%02d" % subject_id
    data_path = os.path.join(ana_path, subject, 'EEG', 'New_Preproc')
    epochs = mne.read_epochs(
        os.path.join(data_path, '%s-causal-highpass-2Hz-epo.fif' % subject))

    # We define the epochs and the labels
    epochs = epochs[condition1, condition2]
    epochs.apply_baseline()

    # Let us restrict ourselves to the MEG channels, and also decimate to
    # make it faster (although we might miss some detail / alias)
    epochs.pick_types(eeg=True).decimate(2, verbose='error')
    mne.epochs.combine_event_ids(epochs, ['stim/face', 'stim/house'],
                                 {'stim': 100},
                                 copy=False)
    mne.epochs.combine_event_ids(epochs, ['imag/face', 'imag/house'],
                                 {'imag': 200},
                                 copy=False)

    # Get the data and labels
    X = epochs.get_data()
    # fit and time decoder
    le = LabelEncoder()
    y = le.fit_transform(epochs.events[:, 2])

    # Use AUC because chance level is same regardless of the class balance
    se = SlidingEstimator(make_pipeline(StandardScaler(),
                                        LogisticRegression()),
                          scoring='roc_auc',
                          n_jobs=1)
    #
    scores = cross_val_multiscore(se, X=X, y=y, cv=StratifiedKFold())

    #cv=StratifiedKFold()

    #scores, permutation_scores, pvalue = permutation_test_score(estimator = se, X=X, y=y, groups=None, scoring = None,
    #    cv=3, n_permutations=100)

    #print("********* %s Classification score %s (pvalue : %s) ***********" % (subject, scores, pvalue))

    # let's save the scores now
    cond1 = condition1.replace('/', '-')
    cond2 = condition2.replace('/', '-')
    a_vs_b = '%s_vs_%s' % (cond1, cond2)
    fname_td = os.path.join(
        results_path,
        '%s-causal-highpass-2Hz-td-auc-%s.mat' % (subject, a_vs_b))
    savemat(fname_td, {
        'scores': scores,
        'times': epochs.times
    })  #, 'perm_scores': permutation_scores, 'pval' : pvalue})
def run_time_decoding(subject, condition1, condition2, session=None):
    msg = f'Contrasting conditions: {condition1} – {condition2}'
    logger.info(
        gen_log_message(message=msg, step=7, subject=subject, session=session))

    fname_epochs = BIDSPath(subject=subject,
                            session=session,
                            task=config.get_task(),
                            acquisition=config.acq,
                            run=None,
                            recording=config.rec,
                            space=config.space,
                            suffix='epo',
                            extension='.fif',
                            datatype=config.get_datatype(),
                            root=config.deriv_root,
                            check=False)

    epochs = mne.read_epochs(fname_epochs)

    # We define the epochs and the labels
    epochs = mne.concatenate_epochs([epochs[condition1], epochs[condition2]])
    X = epochs.get_data()
    n_cond1 = len(epochs[condition1])
    n_cond2 = len(epochs[condition2])
    y = np.r_[np.ones(n_cond1), np.zeros(n_cond2)]

    clf = make_pipeline(
        StandardScaler(),
        LogisticRegression(solver='liblinear',
                           random_state=config.random_state))

    se = SlidingEstimator(clf,
                          scoring=config.decoding_metric,
                          n_jobs=config.N_JOBS)
    scores = cross_val_multiscore(se, X=X, y=y, cv=config.decoding_n_splits)

    # let's save the scores now
    a_vs_b = f'{condition1}-{condition2}'.replace(op.sep, '')
    processing = f'{a_vs_b}+{config.decoding_metric}'
    processing = processing.replace('_', '-').replace('-', '')

    fname_mat = fname_epochs.copy().update(suffix='decoding',
                                           processing=processing,
                                           extension='.mat')
    savemat(fname_mat, {'scores': scores, 'times': epochs.times})

    fname_tsv = fname_mat.copy().update(extension='.tsv')
    tabular_data = pd.DataFrame(
        dict(cond_1=[condition1] * len(epochs.times),
             cond_2=[condition2] * len(epochs.times),
             time=epochs.times,
             mean_crossval_score=scores.mean(axis=0),
             metric=[config.decoding_metric] * len(epochs.times)))
    tabular_data.to_csv(fname_tsv, sep='\t', index=False)
Exemplo n.º 8
0
def classify(epochs):
    Xall = epochs.get_data()  # epochs*channels*time
    rel = epochs.events[:, 2] != 2  # throw out standard
    X = Xall[rel, :, :]  # classifying target vs. novelty
    y = epochs.events[rel, 2]  # target, standard or novelty

    clf = make_pipeline(StandardScaler(), LogisticRegression())
    clfest = dc.SlidingEstimator(clf, n_jobs=1, scoring='accuracy')

    values = dc.cross_val_multiscore(clfest, X, y, cv=5, n_jobs=1)
    return np.mean(values, axis=0)
Exemplo n.º 9
0
def run_gat(name, decoder="ridge"):
    """
    Function to run Generalization Across Time (GAT).

    Parameters
    ----------
    name: str
        Name (pseudonym) of individual subject.
    decoder: str
        Specify type of classifier -'ridge' for Ridge Regression (default),'lin-svm' for linear SVM
        'svm' for nonlinear (RBF) SVM and 'log_reg' for Logistic Regression
    """
    # load high cloze epochs
    epochs = get_epochs(name)['song', 'voice']

    # specify whether to use a linear or nonlinear SVM if SVM is used
    lin = ''  # if not svm it doesn't matter, both log_reg and ridge are linear
    if "svm" in decoder:
        decoder, lin = decoder.split("-")

    # build classifier pipeline #
    # pick a machine learning algorithm to use (ridge/SVM/logistic regression)
    decoder_dict = {
        "ridge":
        RidgeClassifier(class_weight='balanced', random_state=42,
                        solver="sag"),
        "svm":
        SVC(class_weight='balanced',
            kernel=("rbf" if "non" in lin else "linear"),
            random_state=42),
        "log_reg":
        LogisticRegression(class_weight='balanced', random_state=42)
    }

    clf = make_pipeline(StandardScaler(), decoder_dict[decoder])
    gen_clf = GeneralizingEstimator(clf, scoring="roc_auc", n_jobs=4)
    scores = cross_val_multiscore(gen_clf,
                                  epochs.get_data(),
                                  epochs.events[:, -1],
                                  cv=5,
                                  n_jobs=4).mean(0)

    data = epochs.get_data()
    labels = epochs.events[:, -1]

    cv = StratifiedKFold(n_splits=5, random_state=42)
    # calculate prediction confidence scores
    preds = np.empty((len(labels), 225, 225))
    for train, test in cv.split(data, labels):
        gen_clf.fit(data[train], labels[train])
        d = gen_clf.decision_function(data[test])
        preds[test] = d

    return scores, preds  # return subject scores and prediction confidence
def run_time_decoding(subject, condition1, condition2, session=None):
    msg = f'Contrasting conditions: {condition1} – {condition2}'
    logger.info(
        gen_log_message(message=msg, step=8, subject=subject, session=session))

    deriv_path = config.get_subject_deriv_path(subject=subject,
                                               session=session,
                                               kind=config.get_kind())

    fname_in = BIDSPath(subject=subject,
                        session=session,
                        task=config.get_task(),
                        acquisition=config.acq,
                        run=None,
                        recording=config.rec,
                        space=config.space,
                        prefix=deriv_path,
                        kind='epo',
                        extension='.fif',
                        check=False)

    epochs = mne.read_epochs(fname_in)

    # We define the epochs and the labels
    epochs = mne.concatenate_epochs([epochs[condition1], epochs[condition2]])
    epochs.apply_baseline()

    # Get the data and labels
    X = epochs.get_data()
    n_cond1 = len(epochs[condition1])
    n_cond2 = len(epochs[condition2])
    y = np.r_[np.ones(n_cond1), np.zeros(n_cond2)]

    se = SlidingEstimator(make_pipeline(
        StandardScaler(),
        LogisticRegression(solver='liblinear',
                           random_state=config.random_state)),
                          scoring=config.decoding_metric,
                          n_jobs=config.N_JOBS)
    scores = cross_val_multiscore(se, X=X, y=y, cv=config.decoding_n_splits)

    # let's save the scores now
    a_vs_b = f'{condition1}-{condition2}'.replace(op.sep, '')
    processing = f'{a_vs_b}+{config.decoding_metric}'
    processing = processing.replace('_', '-').replace('-', '')
    fname_td = fname_in.copy().update(kind='decoding',
                                      processing=processing,
                                      extension='.mat')
    savemat(fname_td, {'scores': scores, 'times': epochs.times})
Exemplo n.º 11
0
def run_time_decoding(subject, condition1, condition2, session=None):
    msg = f'Contrasting conditions: {condition1} – {condition2}'
    logger.info(
        gen_log_message(message=msg, step=8, subject=subject, session=session))

    deriv_path = config.get_subject_deriv_path(subject=subject,
                                               session=session,
                                               kind=config.get_kind())

    bids_basename = make_bids_basename(subject=subject,
                                       session=session,
                                       task=config.get_task(),
                                       acquisition=config.acq,
                                       run=None,
                                       processing=config.proc,
                                       recording=config.rec,
                                       space=config.space)

    fname_in = op.join(deriv_path, bids_basename + '-epo.fif')
    epochs = mne.read_epochs(fname_in)

    # We define the epochs and the labels
    epochs = mne.concatenate_epochs([epochs[condition1], epochs[condition2]])
    epochs.apply_baseline()

    # Get the data and labels
    X = epochs.get_data()
    n_cond1 = len(epochs[condition1])
    n_cond2 = len(epochs[condition2])
    y = np.r_[np.ones(n_cond1), np.zeros(n_cond2)]

    # Use AUC because chance level is same regardless of the class balance
    se = SlidingEstimator(make_pipeline(
        StandardScaler(),
        LogisticRegression(solver='liblinear',
                           random_state=config.random_state)),
                          scoring=config.decoding_metric,
                          n_jobs=config.N_JOBS)
    scores = cross_val_multiscore(se, X=X, y=y, cv=config.decoding_n_splits)

    # let's save the scores now
    a_vs_b = '%s_vs_%s' % (condition1, condition2)
    a_vs_b = a_vs_b.replace(op.sep, '')
    fname_td = op.join(
        config.bids_root, 'derivatives', config.PIPELINE_NAME,
        '%s_%s_%s_%s.mat' %
        (subject, config.study_name, a_vs_b, config.decoding_metric))
    savemat(fname_td, {'scores': scores, 'times': epochs.times})
Exemplo n.º 12
0
Arquivo: BDM.py Projeto: jalilov/DvM
    def mneClassify(self, sj, to_decode, conditions, time=[-0.3, 0.8]):
        '''

		'''

        clf = make_pipeline(StandardScaler(), LogisticRegression())
        time_decod = SlidingEstimator(clf, n_jobs=1)

        # get eeg data
        eeg = []
        for session in range(2):
            eeg.append(
                mne.read_epochs(
                    '/Users/dirk/Desktop/suppression/processed/subject-{}_ses-{}-epo.fif'
                    .format(sj, session + 1)))

        times = eeg[0].times
        # select time window and electrodes
        s_idx, e_idx = eeg[0].time_as_index(time)
        picks = mne.pick_types(eeg[0].info, eeg=True, exclude='bads')

        eeg = np.vstack((eeg[0]._data, eeg[1]._data))[:, picks, :][:, :,
                                                                   s_idx:e_idx]

        # get behavior data
        with open(
                '/Users/dirk/Desktop/suppression/beh/processed/subject-{}_all.pickle'
                .format(sj), 'rb') as handle:
            beh = pickle.load(handle)

        plt.figure(figsize=(20, 20))
        for i, cnd in enumerate(conditions):

            X = eeg[beh['condition'] == cnd]
            y = beh[to_decode][beh['condition'] == cnd]

            scores = cross_val_multiscore(time_decod, X, y, cv=5, n_jobs=1)
            plt.plot(times[s_idx:e_idx],
                     scores.mean(axis=0),
                     color=['r', 'g', 'b', 'y'][i],
                     label=cnd)

        plt.legend(loc='best')
        plt.savefig(
            '/Users/dirk/Desktop/suppression/bdm/figs/{}_{}_bdm.pdf'.format(
                to_decode, sj))
        plt.close()
def run_time_decoding(subject, condition1, condition2):
    print("processing subject: %s (%s vs %s)" %
          (subject, condition1, condition2))

    print("Processing subject: %s" % subject)

    meg_subject_dir = op.join(config.meg_dir, subject)

    extension = '-epo'
    fname_in = op.join(meg_subject_dir, config.base_fname.format(**locals()))
    print("Input: ", fname_in)

    epochs = mne.read_epochs(fname_in)

    # We define the epochs and the labels
    epochs = mne.concatenate_epochs([epochs[condition1], epochs[condition2]])
    epochs.apply_baseline()

    # Get the data and labels
    X = epochs.get_data()
    n_cond1 = len(epochs[condition1])
    n_cond2 = len(epochs[condition2])
    y = np.r_[np.ones(n_cond1), np.zeros(n_cond2)]

    # Use AUC because chance level is same regardless of the class balance
    se = SlidingEstimator(make_pipeline(
        StandardScaler(),
        LogisticRegression(solver='liblinear',
                           random_state=config.random_state)),
                          scoring=config.decoding_metric,
                          n_jobs=config.N_JOBS)
    cv = StratifiedKFold(random_state=config.random_state,
                         n_splits=config.decoding_n_splits)
    scores = cross_val_multiscore(se, X=X, y=y, cv=cv)

    # let's save the scores now
    a_vs_b = '%s_vs_%s' % (condition1, condition2)
    a_vs_b = a_vs_b.replace(op.sep, '')
    fname_td = op.join(
        meg_subject_dir, '%s_%s_%s_%s.mat' %
        (subject, config.study_name, a_vs_b, config.decoding_metric))
    savemat(fname_td, {'scores': scores, 'times': epochs.times})
def sliding_logreg_source(X, y, cross_val, return_clf=False):
    """Run a sliding estimator with Logistic Regression on source data.

    Parameters:
    -----------
    X : np.array
        features.
    y : vector
        response vector.
    cross_val : cross validation object
        cross validation to adopt.
    return_clf : bool
        whether the clf object should be returned as well.

    Returns
    -------
    score : float
        cross-validated AUC score
    clf : classifier object
        If return_clf == True, the classifier object will be returned, too.
    """
    startt = time.time()

    # Model
    clf = make_pipeline(StandardScaler(), LinearModel(LogisticRegression()))
    sliding = SlidingEstimator(clf, scoring='roc_auc', n_jobs=1)

    print('Computing Logistic Regression.')
    score = cross_val_multiscore(sliding, X, y, cv=cross_val)

    endt = time.time()
    print('Done. Time elapsed for sliding estimator: %i seconds.' %
          (endt - startt))

    if return_clf is True:
        return score, clf
    else:
        return score
Exemplo n.º 15
0
def run_time_decoding(subject_id, condition1, condition2):
    print("processing subject: %s (%s vs %s)" %
          (subject_id, condition1, condition2))

    subject = "sub%03d" % subject_id
    data_path = os.path.join(meg_dir, subject)
    epochs = mne.read_epochs(
        os.path.join(data_path,
                     '%s_highpass-%sHz-epo.fif' % (subject, l_freq)))

    # We define the epochs and the labels
    epochs = mne.concatenate_epochs([epochs[condition1], epochs[condition2]])
    epochs.apply_baseline()

    # Let us restrict ourselves to the MEG channels, and also decimate to
    # make it faster (although we might miss some detail / alias)
    epochs.pick_types(meg=True).decimate(4, verbose='error')

    # Get the data and labels
    X = epochs.get_data()
    n_cond1 = len(epochs[condition1])
    n_cond2 = len(epochs[condition2])
    y = np.r_[np.ones(n_cond1), np.zeros(n_cond2)]

    # Use AUC because chance level is same regardless of the class balance
    se = SlidingEstimator(make_pipeline(StandardScaler(),
                                        LogisticRegression()),
                          scoring='roc_auc',
                          n_jobs=N_JOBS)
    scores = cross_val_multiscore(se, X=X, y=y, cv=StratifiedKFold())

    # let's save the scores now
    a_vs_b = '%s_vs_%s' % (os.path.basename(condition1),
                           os.path.basename(condition2))
    fname_td = os.path.join(
        data_path,
        '%s_highpass-%sHz-td-auc-%s.mat' % (subject, l_freq, a_vs_b))
    savemat(fname_td, {'scores': scores, 'times': epochs.times})
Exemplo n.º 16
0
# by using :class:`sklearn.pipeline.Pipeline`. We can construct decoding
# pipelines and perform cross-validation and grid-search. However scikit-learn
# transformers and estimators generally expect 2D data
# (n_samples * n_features), whereas MNE transformers typically output data
# with a higher dimensionality
# (e.g. n_samples * n_channels * n_frequencies * n_times). A Vectorizer
# therefore needs to be applied between the MNE and the scikit-learn steps
# like:

# Uses all MEG sensors and time points as separate classification
# features, so the resulting filters used are spatio-temporal
clf = make_pipeline(Scaler(epochs.info),
                    Vectorizer(),
                    LogisticRegression(solver='lbfgs'))

scores = cross_val_multiscore(clf, X, y, cv=5, n_jobs=1)

# Mean scores across cross-validation splits
score = np.mean(scores, axis=0)
print('Spatio-temporal: %0.1f%%' % (100 * score,))

###############################################################################
# PSDEstimator
# ^^^^^^^^^^^^
# The :class:`mne.decoding.PSDEstimator`
# computes the power spectral density (PSD) using the multitaper
# method. It takes a 3D array as input, converts it into 2D and computes the
# PSD.
#
# FilterEstimator
# ^^^^^^^^^^^^^^^
    labels_shuffled = np.random.permutation(labels)
    # generate iterator for cross validation
    kf = StratifiedKFold(n_splits=2, shuffle=True)
    cv_iter = kf.split(np.zeros(X.shape), labels_shuffled)

    # pipeline for classification
    cl = make_pipeline(RobustScaler(), PCA(n_components=var_exp),
                       LinearSVC(max_iter=10000, dual=False, penalty="l1"))

    # temporal generalisation
    temp_genr = SlidingEstimator(cl, n_jobs=1, scoring="roc_auc")

    # cross validation
    scores = cross_val_multiscore(temp_genr,
                                  X,
                                  labels_shuffled,
                                  cv=cv_iter,
                                  n_jobs=-1)
    scores_all.append(scores)

scores_all = np.vstack(scores_all)

scores_path = op.join(output_dir,
                      "reg_vs_odd_chance_level-{}.npy".format(subject))

np.save(scores_path, scores_all)

print("saved")

scores_all = scores_all[::2, :]
Exemplo n.º 18
0
    # Extract half of the epochs for similar SNR in all conditions
    epochs_nr = len(epochs['left/grating'])
    epochs_range = np.random.permutation(np.arange(0, epochs_nr, 1))
    np.save('%s_epochs_range.npy' % subject, epochs_range)

    X = np.concatenate(
        (epochs["face"][epochs_range[:int(epochs_nr / 2)]].get_data(),
         epochs["grating"][epochs_range[:int(epochs_nr / 2)]].get_data()))
    y = np.concatenate(
        (np.zeros(int(epochs_nr / 2)), np.ones(int(epochs_nr / 2))))
    cv = StratifiedKFold(n_splits=10, shuffle=True)

    clf = make_pipeline(StandardScaler(), LogisticRegression())
    time_gen = GeneralizingEstimator(clf, scoring='roc_auc', n_jobs=n_jobs)
    time_gen.fit(X, y)
    scores = cross_val_multiscore(time_gen, X, y, cv=cv)

    # Save results
    joblib.dump(time_gen, "%s_time_gen_svm.jbl" % subject)
    np.save("%s_time_gen_score_svm.npy" % subject, scores)

    X_left = np.concatenate(
        (epochs["left/face"].get_data(), epochs["left/grating"].get_data()))
    y_left = np.concatenate((np.zeros(len(epochs["left/face"].get_data())),
                             np.ones(len(epochs["left/grating"].get_data()))))
    clf = make_pipeline(StandardScaler(), LogisticRegression())
    time_gen_left = GeneralizingEstimator(clf,
                                          scoring='roc_auc',
                                          n_jobs=n_jobs)
    time_gen_left.fit(X_left, y_left)
    scores_left = cross_val_multiscore(time_gen, X_left, y_left, cv=cv)
Exemplo n.º 19
0
            cv = KFold(5)
        if regressor == 'condition':
            y = binary_scaler(y) # set values to 0.0 and 1.0
            clf = make_pipeline(StandardScaler(), LogisticRegression(solver='liblinear'))
            scorer = 'roc_auc'
            score = 'AUC'
            cv = StratifiedKFold(5)

        n_jobs = -1

        # set up estimator, get scores
        if decode_using == 'spatial':
            gen = SlidingEstimator(n_jobs=n_jobs,
                                    scoring=scorer,
                                    base_estimator=clf)
            scores = cross_val_multiscore(gen, X, y,
                                          cv=cv)
        elif decode_using == 'temporal':
            gen = SlidingEstimator(n_jobs=n_jobs,
                                scoring=scorer,
                                base_estimator=clf)
            scores = cross_val_multiscore(gen, X, y,
                                        cv=cv)
        else:
            # scoring defaults to neg mean squared so set to scorer
            # shuffle must be true when binary values, otherwise fold will only have one value
            scores = cross_val_score(clf, X, y,
                                    scoring=scorer, #defaults to neg mean squared
                                    cv=KFold(5, shuffle=True))

        # mean scores across cross-validation splits
        scores = np.mean(scores, axis=0)
Exemplo n.º 20
0
def main():
    model_type = "lda"
    exp_name = "freq_gen_matrix/"

    for i, sample in enumerate(range(1, 22)):
        print("sample {}".format(sample))

        if not os.path.isdir("Results/{}/{}/sample_{}".format(
                model_type, exp_name, sample)):
            os.mkdir("Results/{}/{}/sample_{}".format(model_type, exp_name,
                                                      sample))

        epochs = get_epochs(sample, scale=False)
        y_train = epochs.events[:, 2]

        freqs = np.logspace(*np.log10([2, 25]), num=15)
        n_cycles = freqs / 4.
        string_freqs = [round(x, 2) for x in freqs]

        print("applying morlet wavelet")

        wavelet_output = tfr_array_morlet(epochs.get_data(),
                                          sfreq=epochs.info['sfreq'],
                                          freqs=freqs,
                                          n_cycles=n_cycles,
                                          output='complex')

        time_results = np.zeros(
            (wavelet_output.shape[3], len(freqs), len(freqs)))

        for time in range(wavelet_output.shape[3]):
            print("time: {}".format(time))

            wavelet_epochs = wavelet_output[:, :, :, time]
            wavelet_epochs = np.append(wavelet_epochs.real,
                                       wavelet_epochs.imag,
                                       axis=1)

            wavelet_info = mne.create_info(ch_names=wavelet_epochs.shape[1],
                                           sfreq=epochs.info['sfreq'],
                                           ch_types='mag')
            wavelet_epochs = mne.EpochsArray(wavelet_epochs,
                                             info=wavelet_info,
                                             events=epochs.events)

            x_train = pca(80, wavelet_epochs, plot=False)

            model = LinearModel(
                LinearDiscriminantAnalysis(solver='lsqr', shrinkage='auto'))
            freq_gen = GeneralizingEstimator(model,
                                             n_jobs=1,
                                             scoring='accuracy',
                                             verbose=True)
            scores = cross_val_multiscore(freq_gen,
                                          x_train,
                                          y_train,
                                          cv=5,
                                          n_jobs=1)
            scores = np.mean(scores, axis=0)
            time_results[time] = scores

            sns.set()
            ax = sns.barplot(
                np.sort(string_freqs),
                np.diag(scores),
            )
            ax.set(ylim=(0, 0.8),
                   xlabel='Frequencies',
                   ylabel='Accuracy',
                   title='Cross Val Accuracy {} for Subject {} for Time {}'.
                   format(model_type, sample, time))
            ax.axhline(0.12, color='k', linestyle='--')
            ax.figure.set_size_inches(8, 6)
            ax.figure.savefig(
                "Results/{}/{}/sample_{}/time_{}_accuracy.png".format(
                    model_type, exp_name, sample, time),
                dpi=300)
            plt.close('all')
            # plt.show()

            fig, ax = plt.subplots(1, 1)
            im = ax.imshow(scores,
                           interpolation='lanczos',
                           origin='lower',
                           cmap='RdBu_r',
                           extent=[2, 25, 2, 25],
                           vmin=0.,
                           vmax=0.8)
            ax.set_xlabel('Testing Frequency (hz)')
            ax.set_ylabel('Training Frequency (hz)')
            ax.set_title(
                'Frequency generalization for Subject {} at Time {}'.format(
                    sample, time))
            plt.colorbar(im, ax=ax)
            ax.grid(False)
            ax.figure.savefig(
                "Results/{}/{}/sample_{}/time_{}_matrix.png".format(
                    model_type, exp_name, sample, time),
                dpi=300)
            plt.close('all')
            # plt.show()

        time_results = time_results.reshape(time_results.shape[0], -1)
        all_results_df = pd.DataFrame(time_results)
        all_results_df.to_csv(
            "Results/{}/{}/sample_{}/all_time_matrix_results.csv".format(
                model_type, exp_name, sample))
Exemplo n.º 21
0
def run_time_decoding(subject_id, cond1, cond2, event_id):

    subject = "S%02d" % subject_id

    print subject, cond1, cond2

    data_path = os.path.join('/home/claire/DATA/Data_Face_House/' + subject +
                             '/EEG/')

    raw_fname = data_path + subject + '-raw.fif'
    event_fname = data_path + subject + '-eve.fif'
    tmin, tmax = -0.5, 1.5

    raw = mne.io.read_raw_fif(raw_fname, preload=True)

    events = mne.read_events(event_fname)

    picks = mne.pick_types(raw.info,
                           meg=False,
                           eeg=True,
                           stim=True,
                           eog=True,
                           exclude='bads')

    # Read epochs
    epochs = mne.Epochs(raw,
                        events,
                        event_id,
                        tmin,
                        tmax,
                        proj=True,
                        picks=picks,
                        baseline=(None, 0.),
                        preload=True,
                        decim=4)

    epochs.pick_types(eeg=True, exclude='bads')

    #only look at occipital channels
    #    select_chans = [u'Iz', u'Oz', u'O1', u'O2', u'O3', u'PO7', u'PO8', u'POz', u'PO1', u'PO3', u'PO2', u'PO4']
    select_chans = [u'PO7', u'PO8']
    #select_chans = [ u'Cz', u'FPz']

    ch_names = [ch_name.replace('', '') for ch_name in select_chans]
    epochs.pick_types(eeg=True).pick_channels(ch_names)

    # average group of 4 trials

    data_cond1 = epochs['imag/face'].get_data()
    data_cond2 = epochs['imag/house'].get_data()

    mean_cond1 = []
    ind_trial = 0
    while ind_trial <= len(data_cond1) - 5:
        mean_cond1.append(mean(data_cond1[ind_trial:(ind_trial + 4)], 0))
        print ind_trial
        ind_trial += 5

    mean_cond2 = []
    ind_trial = 0
    while ind_trial <= len(data_cond2) - 5:
        mean_cond2.append(mean(data_cond2[ind_trial:(ind_trial + 4)], 0))
        print ind_trial
        ind_trial += 5

    X = []
    # create variable for decoding
    X = mean_cond1 + mean_cond2
    X = np.array(X)
    y = np.array([0] * len(mean_cond1) + [1] * len(mean_cond2))
    # fit and time decoder
    #X = epochs.get_data()  # MEG signals: n_epochs, n_channels, n_times
    #y = epochs.events[:, 2]  # target: Audio left or right

    cv = StratifiedKFold(n_splits=3, shuffle=False)
    cv.get_n_splits(X, y)

    clf = make_pipeline(StandardScaler(), LogisticRegression())

    time_decod = SlidingEstimator(clf, n_jobs=1, scoring='roc_auc')

    #scores = cross_val_multiscore(time_decod, X, y, cv=5, n_jobs=1)

    scores = cross_val_multiscore(time_decod, X, y, cv=cv, n_jobs=1)
    # Mean scores across cross-validation splits
    scores = np.mean(scores, axis=0)

    # save scores
    a_vs_b = '%s_vs_%s' % (cond1, cond2)
    print 'a_vs_b = %s' % a_vs_b

    fname_td = os.path.join(
        data_path, '%s-td-auc-%s_ave_4_trials_po7_po8.mat' % (subject, a_vs_b))
    print 'Saving %s' % fname_td
    from scipy.io import savemat
    savemat(fname_td, {'scores': scores, 'times': epochs.times})
def run_time_decoding(subject, condition1, condition2, session=None):
    msg = f'Contrasting conditions: {condition1} – {condition2}'
    logger.info(gen_log_message(message=msg, step=7, subject=subject,
                                session=session))

    fname_epochs = BIDSPath(subject=subject,
                            session=session,
                            task=config.get_task(),
                            acquisition=config.acq,
                            run=None,
                            recording=config.rec,
                            space=config.space,
                            suffix='epo',
                            extension='.fif',
                            datatype=config.get_datatype(),
                            root=config.deriv_root,
                            check=False)

    epochs = mne.read_epochs(fname_epochs)
    if config.analyze_channels:
        # We special-case the average reference here to work around a situation
        # where e.g. `analyze_channels` might contain only a single channel:
        # `concatenate_epochs` below will then fail when trying to create /
        # apply the projection. We can avoid this by removing an existing
        # average reference projection here, and applying the average reference
        # directly – without going through a projector.
        if 'eeg' in config.ch_types and config.eeg_reference == 'average':
            epochs.set_eeg_reference('average')
        else:
            epochs.apply_proj()
        epochs.pick(config.analyze_channels)

    # We define the epochs and the labels
    if isinstance(config.conditions, dict):
        epochs_conds = [config.conditions[condition1],
                        config.conditions[condition2]]
        cond_names = [condition1, condition2]
    else:
        epochs_conds = cond_names = [condition1, condition2]
        epochs_conds = [condition1, condition2]

    epochs = mne.concatenate_epochs([epochs[epochs_conds[0]],
                                     epochs[epochs_conds[1]]])
    n_cond1 = len(epochs[epochs_conds[0]])
    n_cond2 = len(epochs[epochs_conds[1]])

    X = epochs.get_data()
    y = np.r_[np.ones(n_cond1), np.zeros(n_cond2)]

    clf = make_pipeline(
        StandardScaler(),
        LogisticRegression(solver='liblinear',
                           random_state=config.random_state))

    se = SlidingEstimator(clf,
                          scoring=config.decoding_metric,
                          n_jobs=config.N_JOBS)
    scores = cross_val_multiscore(se, X=X, y=y, cv=config.decoding_n_splits)

    # let's save the scores now
    a_vs_b = f'{cond_names[0]}+{cond_names[1]}'.replace(op.sep, '')
    processing = f'{a_vs_b}+{config.decoding_metric}'
    processing = processing.replace('_', '-').replace('-', '')

    fname_mat = fname_epochs.copy().update(suffix='decoding',
                                           processing=processing,
                                           extension='.mat')
    savemat(fname_mat, {'scores': scores, 'times': epochs.times})

    fname_tsv = fname_mat.copy().update(extension='.tsv')
    tabular_data = pd.DataFrame(
        dict(cond_1=[cond_names[0]] * len(epochs.times),
             cond_2=[cond_names[1]] * len(epochs.times),
             time=epochs.times,
             mean_crossval_score=scores.mean(axis=0),
             metric=[config.decoding_metric] * len(epochs.times))
    )
    tabular_data.to_csv(fname_tsv, sep='\t', index=False)
Exemplo n.º 23
0
    # The `inverse_transform` parameter will call this method on any estimator
    # contained in the pipeline, in reverse order.
    coef = get_coef(clf, name, inverse_transform=True)
    evoked = EvokedArray(coef, epochs.info, tmin=epochs.tmin)
    evoked.plot_topomap(title='EEG %s' % name[:-1], time_unit='s')

#------------------------------------------------------------------------------
#------------------------------------------------------------------------------
#------------------------------------------------------------------------------

#Applying StandardScaler, LogisticRegression

clf = make_pipeline(StandardScaler(), LogisticRegression(solver='lbfgs'))

time_decod = SlidingEstimator(clf, n_jobs=1, scoring='roc_auc')
scores = cross_val_multiscore(time_decod, ica_data, labels, cv=5, n_jobs=1)

# Mean scores across cross-validation splits
scores = np.mean(scores, axis=0)

# Plot
fig, ax = plt.subplots()
ax.plot(epochs.times, scores, label='score')
ax.axhline(.5, color='k', linestyle='--', label='chance')
ax.set_xlabel('Times')
ax.set_ylabel('AUC')  # Area Under the Curve
ax.legend()
ax.axvline(.0, color='k', linestyle='-')
ax.set_title('Sensor space decoding')

#------------------------------------------------------------------------------
Exemplo n.º 24
0
            if subject[4:] in ("101", "124a", "213",
                               "301a") and interval != "All":
                use_splits = 3
            else:
                use_splits = n_splits
            cv = StratifiedKFold(n_splits=use_splits,
                                 shuffle=True,
                                 random_state=seed)
            # Get the data and label
            X = eps.get_data()
            y = eps.events[:, -1]
            # AUC b/c chance level same regardless of the class balance
            score = np.mean(
                cross_val_multiscore(time_decode,
                                     X=X,
                                     y=y,
                                     cv=cv,
                                     n_jobs=n_jobs),
                axis=0,
            )
            aucs[si, ci, ii] = score[s_ix].mean()
            print("  %s vs. %s mean AUC: %.3f on %d epochs" %
                  (c1, c2, score.mean(), len(eps)))
    mne.externals.h5io.write_hdf5(
        fname, dict(auc=aucs[si], events=events, intervals=intervals))

ages = np.array(features["age"])
age_bounds = [[40, 80], [105, 150], [175, 210], [40, 210]]
fig, axes = plt.subplots(
    len(events),
    len(age_bounds),
Exemplo n.º 25
0
###############################################################################
# Temporal decoding
# -----------------
#
# We'll use a Logistic Regression for a binary classification as machine
# learning model.

# We will train the classifier on all left visual vs auditory trials on MEG

X = epochs.get_data()  # MEG signals: n_epochs, n_channels, n_times
y = epochs.events[:, 2]  # target: Audio left or right

clf = make_pipeline(StandardScaler(), LogisticRegression())

time_decod = SlidingEstimator(clf, n_jobs=1, scoring='roc_auc', verbose=True)
scores = cross_val_multiscore(time_decod, X, y, cv=5, n_jobs=1)

# Mean scores across cross-validation splits
scores = np.mean(scores, axis=0)

# Plot
fig, ax = plt.subplots()
ax.plot(epochs.times, scores, label='score')
ax.axhline(.5, color='k', linestyle='--', label='chance')
ax.set_xlabel('Times')
ax.set_ylabel('AUC')  # Area Under the Curve
ax.legend()
ax.axvline(.0, color='k', linestyle='-')
ax.set_title('Sensor space decoding')
plt.show()
                        rangeD = ['Resp_Screen_Object', 'Resp_Screen_Side']
                    else:
                        y1 = whattodecod(cow_codes, y)  # cow vs. bicycle
                        y2 = whattodecod(round_codes, y)  # round vs. square
                        y3 = whattodecod(left_codes, y)  # left vs. right
                        y4 = whattodecod(text_codes, y)  # text vs. image
                        rangeY = [y1, y2, y3, y4]
                        rangeD = ['Object', 'Cue', 'Button', 'Modality']

                    # ******** decoding and saving *********
                    for nb_yy, (yy,
                                which_decod) in enumerate(zip(rangeY, rangeD)):

                        scores = cross_val_multiscore(clf,
                                                      data_to_dec,
                                                      yy,
                                                      cv=5,
                                                      n_jobs=-1)
                        scores = scores.mean(0)
                        fname = op.join(
                            directorydecod, '%s_%s_%s_%s_%s.npy' %
                            (subject, file_to_ana, which_decod, type_epo,
                             which_channels))
                        np.save(fname, scores)

                    del epochs

    if file_to_ana is 'JustCue':

        for subj_nb, (subject,
                      sessions) in enumerate(zip(subjects_id,
Exemplo n.º 27
0
                           times[525:], (1.5, 1.6),
                           mode="mean")

labels = np.array(beh.movement_dir_sign)

# data + labels

# parameters for the classification
k_folds = 10  # cv folds
var_exp = 0.99  # percentage of variance

# generate iterator for cross validation
kf = StratifiedKFold(n_splits=k_folds, shuffle=True)
cv_iter = kf.split(np.zeros(data.shape), labels)

# pipeline for classification
cl = make_pipeline(RobustScaler(), PCA(n_components=var_exp),
                   LinearSVC(max_iter=10000, dual=False, penalty="l1"))

# temporal generalisation
temp_genr = GeneralizingEstimator(cl, n_jobs=1, scoring="roc_auc")

# cross validation
scores = cross_val_multiscore(temp_genr, data, labels, cv=cv_iter, n_jobs=-1)

scores_path = op.join(output_dir,
                      "clk_vs_anti_new_baseline-{}.npy".format(subject))

np.save(scores_path, scores)

print("saved", scores_path)
Exemplo n.º 28
0
    st_scores = []
    for sub in subjects:

        bids_path = dataset.update(subject=sub)
        raw_haemo, epochs = epoch_preprocessing(bids_path)

        epochs.pick(chroma)

        X = epochs.get_data()
        y = epochs.events[:, 2]

        clf = make_pipeline(Scaler(epochs.info), Vectorizer(),
                            LogisticRegression(solver='liblinear'))

        scores = 100 * cross_val_multiscore(
            clf, X, y, cv=5, n_jobs=1, scoring='roc_auc')

        st_scores.append(np.mean(scores, axis=0))

    print(f"Average spatio-temporal ROC-AUC performance ({chroma}) = "
          f"{np.round(np.mean(st_scores))} % ({np.round(np.std(st_scores))})")

# %%
# Conclusion
# ----------
#
# Data were epoched then decoding was performed on the hbo signal and the hbr
# signal. The HbO signal decodes the conditions with 6% greater accuracy
# than the HbR signal. For further discussion about the efficacy of fNIRS
# signals in decoding experimental condition see Luke et. al. (2021)
# :footcite:`Luke2021.11.19.469225`.
def run_time_decoding(subject_id, cond1, cond2, event_id):
    print cond1, cond2

    subject = "S%02d" % subject_id
    data_path = os.path.join('/home/claire/DATA/Data_Face_House/' + subject +
                             '/EEG/')

    raw_fname = data_path + subject + '-raw.fif'
    event_fname = data_path + subject + '-eve.fif'
    tmin, tmax = -0.2, 1

    raw = mne.io.read_raw_fif(raw_fname, preload=True)

    events = mne.read_events(event_fname)

    picks = mne.pick_types(raw.info,
                           meg=False,
                           eeg=True,
                           stim=True,
                           eog=True,
                           exclude='bads')

    # Read epochs
    epochs = mne.Epochs(raw,
                        events,
                        event_id,
                        tmin,
                        tmax,
                        proj=True,
                        picks=picks,
                        baseline=(None, 0.),
                        preload=True,
                        decim=4)

    epochs.pick_types(eeg=True, exclude='bads')

    # only look at occipital channels
    #    select_chans = [u'Iz', u'Oz', u'O1', u'O2', u'O3', u'PO7', u'PO8', u'POz', u'PO1', u'PO3', u'PO2', u'PO4']
    #select_chans = [ u'PO7', u'PO8']
    #select_chans = [ u'Cz', u'FPz']

    #ch_names=[ch_name.replace('', '') for ch_name in select_chans]
    #epochs.pick_types(eeg=True).pick_channels(ch_names)

    # fit and time decoder
    X = epochs.get_data()  # MEG signals: n_epochs, n_channels, n_times
    y = epochs.events[:, 2]  # target: Audio left or right

    clf = make_pipeline(StandardScaler(), LogisticRegression())

    time_decod = SlidingEstimator(clf, n_jobs=1, scoring='roc_auc')

    scores = cross_val_multiscore(time_decod, X, y, cv=5, n_jobs=1)
    # Mean scores across cross-validation splits
    scores = np.mean(scores, axis=0)

    # save scores
    a_vs_b = '%s_vs_%s' % (cond1, cond2)
    print 'a_vs_b = %s' % a_vs_b

    fname_td = os.path.join(data_path, '%s-td-auc-%s.mat' % (subject, a_vs_b))
    print 'Saving %s' % fname_td
    from scipy.io import savemat
    savemat(fname_td, {'scores': scores, 'times': epochs.times})
Exemplo n.º 30
0
                                        sfreq=epochs.info['sfreq'],
                                        freqs=freqs,
                                        output='power',
                                        n_cycles=n_cycles)
n_epochs, n_channels, n_freqs, n_times = X.shape
X = X.reshape(n_epochs, n_channels, -1)  # collapse freqs and time
# Run decoding on TFR output
for analysis in analyses:
    fname = results_folder +\
        '%s_tf_scores_%s_%s.npy' % (subject, 'Cue', analysis)
    y = np.array(events_behavior[analysis])
    clf = make_pipeline(
        StandardScaler(),
        force_predict(LogisticRegression(), 'predict_proba', axis=1))
    scorer = scorer_auc
    kwargs = dict()
    le = preprocessing.LabelEncoder()
    le.fit(y)
    y = le.transform(y)
    sel = np.where(y != 0)[0]
    td = SlidingEstimator(clf,
                          scoring=make_scorer(scorer),
                          n_jobs=24,
                          **kwargs)
    td.fit(X[sel], y[sel])
    scores = cross_val_multiscore(td, X[sel], y[sel], cv=StratifiedKFold(12))
    scores = scores.mean(axis=0)
    scores = np.reshape(scores, (n_freqs, n_times))
    # Save cross validated scores
    np.save(fname, np.array(scores))
Exemplo n.º 31
0
    LinearModel(LogisticRegression(solver='liblinear')),
)

time_decoder = SlidingEstimator(
    clf,
    scoring='roc_auc',
    n_jobs=n_jobs,
)

y = epochs_df['label'].values.copy()
y[y == 2] = 0

scores = cross_val_multiscore(
    time_decoder,
    X=label_ts,
    y=y,
    groups=epochs_df['session'],
    cv=len(epochs_df['session'].unique()),
    n_jobs=n_jobs,
)

time_decoder.fit(label_ts, y)
coef = get_coef(time_decoder, 'patterns_', inverse_transform=True)

# %%
# Plot


def fig_save(fig, path):
    html = fig.to_html()
    with open(path, 'w') as f:
        f.write(html)