Exemplo n.º 1
1
def test_saving_picked():
    """Test saving picked CTF instances."""
    temp_dir = _TempDir()
    out_fname = op.join(temp_dir, 'test_py_raw.fif')
    raw = read_raw_ctf(op.join(ctf_dir, ctf_fname_1_trial))
    raw.crop(0, 1).load_data()
    assert raw.compensation_grade == get_current_comp(raw.info) == 0
    assert len(raw.info['comps']) == 5
    pick_kwargs = dict(meg=True, ref_meg=False, verbose=True)
    for comp_grade in [0, 1]:
        raw.apply_gradient_compensation(comp_grade)
        with catch_logging() as log:
            raw_pick = raw.copy().pick_types(**pick_kwargs)
        assert len(raw.info['comps']) == 5
        assert len(raw_pick.info['comps']) == 0
        log = log.getvalue()
        assert 'Removing 5 compensators' in log
        raw_pick.save(out_fname, overwrite=True)  # should work
        raw2 = read_raw_fif(out_fname)
        assert (raw_pick.ch_names == raw2.ch_names)
        assert_array_equal(raw_pick.times, raw2.times)
        assert_allclose(raw2[0:20][0], raw_pick[0:20][0], rtol=1e-6,
                        atol=1e-20)  # atol is very small but > 0

        raw2 = read_raw_fif(out_fname, preload=True)
        assert (raw_pick.ch_names == raw2.ch_names)
        assert_array_equal(raw_pick.times, raw2.times)
        assert_allclose(raw2[0:20][0], raw_pick[0:20][0], rtol=1e-6,
                        atol=1e-20)  # atol is very small but > 0
Exemplo n.º 2
0
def test_rawctf_clean_names():
    """Test RawCTF _clean_names method."""
    # read test data
    with pytest.warns(RuntimeWarning, match='ref channel RMSP did not'):
        raw = read_raw_ctf(op.join(ctf_dir, ctf_fname_catch))
        raw_cleaned = read_raw_ctf(op.join(ctf_dir, ctf_fname_catch),
                                   clean_names=True)
    test_channel_names = _clean_names(raw.ch_names)
    test_info_comps = copy.deepcopy(raw.info['comps'])

    # channel names should not be cleaned by default
    assert raw.ch_names != test_channel_names

    chs_ch_names = [ch['ch_name'] for ch in raw.info['chs']]

    assert chs_ch_names != test_channel_names

    for test_comp, comp in zip(test_info_comps, raw.info['comps']):
        for key in ('row_names', 'col_names'):
            assert not array_equal(_clean_names(test_comp['data'][key]),
                                   comp['data'][key])

    # channel names should be cleaned if clean_names=True
    assert raw_cleaned.ch_names == test_channel_names

    for ch, test_ch_name in zip(raw_cleaned.info['chs'], test_channel_names):
        assert ch['ch_name'] == test_ch_name

    for test_comp, comp in zip(test_info_comps, raw_cleaned.info['comps']):
        for key in ('row_names', 'col_names'):
            assert _clean_names(test_comp['data'][key]) == comp['data'][key]
Exemplo n.º 3
0
def convert_ds_to_raw_fif(ds_file):
    import os
    import os.path as op
    
    from nipype.utils.filemanip import split_filename as split_f
    from mne.io import read_raw_ctf
    
    
    subj_path,basename,ext = split_f(ds_file)
    print subj_path,basename,ext
    raw = read_raw_ctf(ds_file)
    #raw_fif_file = os.path.abspath(basename + "_raw.fif")
    
    #raw.save(raw_fif_file)
    #return raw_fif_file

    
    raw_fif_file = os.path.join(subj_path,basename + "_raw.fif")
    if not op.isfile(raw_fif_file):
        raw = read_raw_ctf(ds_file)
        raw.save(raw_fif_file)
    else:
        print '*** RAW FIF file %s exists!!!' % raw_fif_file
        
    return raw_fif_file
Exemplo n.º 4
0
def test_cov_ctf():
    """Test basic cov computation on ctf data with/without compensation."""
    raw = read_raw_ctf(ctf_fname).crop(0., 2.).load_data()
    events = make_fixed_length_events(raw, 99999)
    assert len(events) == 2
    ch_names = [raw.info['ch_names'][pick]
                for pick in pick_types(raw.info, meg=True, eeg=False,
                                       ref_meg=False)]

    for comp in [0, 1]:
        raw.apply_gradient_compensation(comp)
        epochs = Epochs(raw, events, None, -0.2, 0.2, preload=True)
        with pytest.warns(RuntimeWarning, match='Too few samples'):
            noise_cov = compute_covariance(epochs, tmax=0.,
                                           method=['empirical'])
        prepare_noise_cov(noise_cov, raw.info, ch_names)

    raw.apply_gradient_compensation(0)
    epochs = Epochs(raw, events, None, -0.2, 0.2, preload=True)
    with pytest.warns(RuntimeWarning, match='Too few samples'):
        noise_cov = compute_covariance(epochs, tmax=0., method=['empirical'])
    raw.apply_gradient_compensation(1)

    # TODO This next call in principle should fail.
    prepare_noise_cov(noise_cov, raw.info, ch_names)

    # make sure comps matrices was not removed from raw
    assert raw.info['comps'], 'Comps matrices removed'
Exemplo n.º 5
0
def test_check_compensation_consistency():
    """Test check picks compensation."""
    raw = read_raw_ctf(ctf_fname, preload=False)
    events = make_fixed_length_events(raw, 99999)
    picks = pick_types(raw.info, meg=True, exclude=[], ref_meg=True)
    pick_ch_names = [raw.info['ch_names'][idx] for idx in picks]
    for (comp, expected_result) in zip([0, 1], [False, False]):
        raw.apply_gradient_compensation(comp)
        ret, missing = _bad_chans_comp(raw.info, pick_ch_names)
        assert ret == expected_result
        assert len(missing) == 0
        Epochs(raw, events, None, -0.2, 0.2, preload=False, picks=picks)

    picks = pick_types(raw.info, meg=True, exclude=[], ref_meg=False)
    pick_ch_names = [raw.info['ch_names'][idx] for idx in picks]

    for (comp, expected_result) in zip([0, 1], [False, True]):
        raw.apply_gradient_compensation(comp)
        ret, missing = _bad_chans_comp(raw.info, pick_ch_names)
        assert ret == expected_result
        assert len(missing) == 17
        with catch_logging() as log:
            Epochs(raw, events, None, -0.2, 0.2, preload=False,
                   picks=picks, verbose=True)
            assert'Removing 5 compensators' in log.getvalue()
Exemplo n.º 6
0
def test_plot_trans():
    """Test plotting of -trans.fif files and MEG sensor layouts
    """
    evoked = read_evokeds(evoked_fname)[0]
    with warnings.catch_warnings(record=True):  # 4D weight tables
        bti = read_raw_bti(pdf_fname, config_fname, hs_fname, convert=True,
                           preload=False).info
    infos = dict(
        Neuromag=evoked.info,
        CTF=read_raw_ctf(ctf_fname).info,
        BTi=bti,
        KIT=read_raw_kit(sqd_fname).info,
    )
    for system, info in infos.items():
        ref_meg = False if system == 'KIT' else True
        plot_trans(info, trans_fname, subject='sample', meg_sensors=True,
                   subjects_dir=subjects_dir, ref_meg=ref_meg)
    # KIT ref sensor coil def not defined
    assert_raises(RuntimeError, plot_trans, infos['KIT'], None,
                  meg_sensors=True, ref_meg=True)
    info = infos['Neuromag']
    assert_raises(ValueError, plot_trans, info, trans_fname,
                  subject='sample', subjects_dir=subjects_dir,
                  ch_type='bad-chtype')
    assert_raises(TypeError, plot_trans, 'foo', trans_fname,
                  subject='sample', subjects_dir=subjects_dir)
    # no-head version
    plot_trans(info, None, meg_sensors=True, dig=True, coord_frame='head')
    # EEG only with strange options
    with warnings.catch_warnings(record=True) as w:
        plot_trans(evoked.copy().pick_types(meg=False, eeg=True).info,
                   trans=trans_fname, meg_sensors=True)
    assert_true(['Cannot plot MEG' in str(ww.message) for ww in w])
Exemplo n.º 7
0
def test_plot_ref_meg():
    """Test plotting ref_meg."""
    import matplotlib.pyplot as plt
    raw_ctf = read_raw_ctf(ctf_fname_continuous).crop(0, 1).load_data()
    raw_ctf.plot()
    plt.close('all')
    assert_raises(ValueError, raw_ctf.plot, group_by='selection')
Exemplo n.º 8
0
def test_find_ch_connectivity():
    """Test computing the connectivity matrix."""
    data_path = testing.data_path()

    raw = read_raw_fif(raw_fname, preload=True)
    sizes = {'mag': 828, 'grad': 1700, 'eeg': 386}
    nchans = {'mag': 102, 'grad': 204, 'eeg': 60}
    for ch_type in ['mag', 'grad', 'eeg']:
        conn, ch_names = find_ch_connectivity(raw.info, ch_type)
        # Silly test for checking the number of neighbors.
        assert_equal(conn.getnnz(), sizes[ch_type])
        assert_equal(len(ch_names), nchans[ch_type])
    pytest.raises(ValueError, find_ch_connectivity, raw.info, None)

    # Test computing the conn matrix with gradiometers.
    conn, ch_names = _compute_ch_connectivity(raw.info, 'grad')
    assert_equal(conn.getnnz(), 2680)

    # Test ch_type=None.
    raw.pick_types(meg='mag')
    find_ch_connectivity(raw.info, None)

    bti_fname = op.join(data_path, 'BTi', 'erm_HFH', 'c,rfDC')
    bti_config_name = op.join(data_path, 'BTi', 'erm_HFH', 'config')
    raw = read_raw_bti(bti_fname, bti_config_name, None)
    _, ch_names = find_ch_connectivity(raw.info, 'mag')
    assert 'A1' in ch_names

    ctf_fname = op.join(data_path, 'CTF', 'testdata_ctf_short.ds')
    raw = read_raw_ctf(ctf_fname)
    _, ch_names = find_ch_connectivity(raw.info, 'mag')
    assert 'MLC11' in ch_names

    pytest.raises(ValueError, find_ch_connectivity, raw.info, 'eog')
Exemplo n.º 9
0
def test_check_compensation_consistency():
    """Test check picks compensation."""
    raw = read_raw_ctf(ctf_fname, preload=False)
    events = make_fixed_length_events(raw, 99999)
    picks = pick_types(raw.info, meg=True, exclude=[], ref_meg=True)
    pick_ch_names = [raw.info['ch_names'][idx] for idx in picks]
    for (comp, expected_result) in zip([0, 1], [False, False]):
        raw.apply_gradient_compensation(comp)
        ret, missing = _bad_chans_comp(raw.info, pick_ch_names)
        assert ret == expected_result
        assert len(missing) == 0
        Epochs(raw, events, None, -0.2, 0.2, preload=False, picks=picks)

    picks = pick_types(raw.info, meg=True, exclude=[], ref_meg=False)
    pick_ch_names = [raw.info['ch_names'][idx] for idx in picks]

    for (comp, expected_result) in zip([0, 1], [False, True]):
        raw.apply_gradient_compensation(comp)
        ret, missing = _bad_chans_comp(raw.info, pick_ch_names)
        assert ret == expected_result
        assert len(missing) == 17
        if comp != 0:
            with pytest.raises(RuntimeError,
                               match='Compensation grade 1 has been applied'):
                Epochs(raw, events, None, -0.2, 0.2, preload=False,
                       picks=picks)
        else:
            Epochs(raw, events, None, -0.2, 0.2, preload=False, picks=picks)
Exemplo n.º 10
0
def test_ica_ctf():
    """Test run ICA computation on ctf data with/without compensation."""
    method = 'fastica'
    raw = read_raw_ctf(ctf_fname, preload=True)
    events = make_fixed_length_events(raw, 99999)
    for comp in [0, 1]:
        raw.apply_gradient_compensation(comp)
        epochs = Epochs(raw, events, None, -0.2, 0.2, preload=True)
        evoked = epochs.average()

        # test fit
        for inst in [raw, epochs]:
            ica = ICA(n_components=2, random_state=0, max_iter=2,
                      method=method)
            with pytest.warns(UserWarning, match='did not converge'):
                ica.fit(inst)

        # test apply and get_sources
        for inst in [raw, epochs, evoked]:
            ica.apply(inst)
            ica.get_sources(inst)

    # test mixed compensation case
    raw.apply_gradient_compensation(0)
    ica = ICA(n_components=2, random_state=0, max_iter=2, method=method)
    with pytest.warns(UserWarning, match='did not converge'):
        ica.fit(raw)
    raw.apply_gradient_compensation(1)
    epochs = Epochs(raw, events, None, -0.2, 0.2, preload=True)
    evoked = epochs.average()
    for inst in [raw, epochs, evoked]:
        with pytest.raises(RuntimeError, match='Compensation grade of ICA'):
            ica.apply(inst)
        with pytest.raises(RuntimeError, match='Compensation grade of ICA'):
            ica.get_sources(inst)
Exemplo n.º 11
0
def test_ica_eeg():
    """Test ICA on EEG."""
    method = 'fastica'
    raw_fif = read_raw_fif(fif_fname, preload=True)
    with pytest.warns(RuntimeWarning, match='events'):
        raw_eeglab = read_raw_eeglab(input_fname=eeglab_fname,
                                     montage=eeglab_montage, preload=True)
    for raw in [raw_fif, raw_eeglab]:
        events = make_fixed_length_events(raw, 99999, start=0, stop=0.3,
                                          duration=0.1)
        picks_meg = pick_types(raw.info, meg=True, eeg=False)[:2]
        picks_eeg = pick_types(raw.info, meg=False, eeg=True)[:2]
        picks_all = []
        picks_all.extend(picks_meg)
        picks_all.extend(picks_eeg)
        epochs = Epochs(raw, events, None, -0.1, 0.1, preload=True)
        evoked = epochs.average()

        for picks in [picks_meg, picks_eeg, picks_all]:
            if len(picks) == 0:
                continue
            # test fit
            for inst in [raw, epochs]:
                ica = ICA(n_components=2, random_state=0, max_iter=2,
                          method=method)
                with pytest.warns(None):
                    ica.fit(inst, picks=picks)

            # test apply and get_sources
            for inst in [raw, epochs, evoked]:
                ica.apply(inst)
                ica.get_sources(inst)

    with pytest.warns(RuntimeWarning, match='MISC channel'):
        raw = read_raw_ctf(ctf_fname2,  preload=True)
    events = make_fixed_length_events(raw, 99999, start=0, stop=0.2,
                                      duration=0.1)
    picks_meg = pick_types(raw.info, meg=True, eeg=False)[:2]
    picks_eeg = pick_types(raw.info, meg=False, eeg=True)[:2]
    picks_all = picks_meg + picks_eeg
    for comp in [0, 1]:
        raw.apply_gradient_compensation(comp)
        epochs = Epochs(raw, events, None, -0.1, 0.1, preload=True)
        evoked = epochs.average()

        for picks in [picks_meg, picks_eeg, picks_all]:
            if len(picks) == 0:
                continue
            # test fit
            for inst in [raw, epochs]:
                ica = ICA(n_components=2, random_state=0, max_iter=2,
                          method=method)
                with pytest.warns(None):
                    ica.fit(inst)

            # test apply and get_sources
            for inst in [raw, epochs, evoked]:
                ica.apply(inst)
                ica.get_sources(inst)
Exemplo n.º 12
0
def test_interpolation_ctf_comp():
    """Test interpolation with compensated CTF data."""
    ctf_dir = op.join(testing.data_path(download=False), 'CTF')
    raw_fname = op.join(ctf_dir, 'somMDYO-18av.ds')
    raw = io.read_raw_ctf(raw_fname, preload=True)
    raw.info['bads'] = [raw.ch_names[5], raw.ch_names[-5]]
    raw.interpolate_bads(mode='fast')
    assert raw.info['bads'] == []
Exemplo n.º 13
0
def test_read_spm_ctf():
    """Test CTF reader with omitted samples."""
    data_path = spm_face.data_path()
    raw_fname = op.join(data_path, 'MEG', 'spm',
                        'SPM_CTF_MEG_example_faces1_3D.ds')
    raw = read_raw_ctf(raw_fname)
    extras = raw._raw_extras[0]
    assert_equal(extras['n_samp'], raw.n_times)
    assert_false(extras['n_samp'] == extras['n_samp_tot'])
Exemplo n.º 14
0
def test_calculate_head_pos_ctf():
    """Test extracting of cHPI positions from ctf data."""
    raw = read_raw_ctf(ctf_chpi_fname)
    quats = _calculate_head_pos_ctf(raw)
    mc_quats = read_head_pos(ctf_chpi_pos_fname)
    _assert_quats(quats, mc_quats, dist_tol=0.004, angle_tol=2.5)

    raw = read_raw_fif(ctf_fname)
    pytest.raises(RuntimeError, _calculate_head_pos_ctf, raw)
Exemplo n.º 15
0
def test_dipole_fitting_ctf():
    """Test dipole fitting with CTF data."""
    raw_ctf = read_raw_ctf(fname_ctf).set_eeg_reference()
    events = make_fixed_length_events(raw_ctf, 1)
    evoked = Epochs(raw_ctf, events, 1, 0, 0, baseline=None).average()
    cov = make_ad_hoc_cov(evoked.info)
    sphere = make_sphere_model((0., 0., 0.))
    # XXX Eventually we should do some better checks about accuracy, but
    # for now our CTF phantom fitting tutorials will have to do
    # (otherwise we need to add that to the testing dataset, which is
    # a bit too big)
    fit_dipole(evoked, cov, sphere)
Exemplo n.º 16
0
def test_ica_labels():
    """Test ICA labels."""
    # The CTF data are uniquely well suited to testing the ICA.find_bads_
    # methods
    raw = read_raw_ctf(ctf_fname, preload=True)
    # derive reference ICA components and append them to raw
    icarf = ICA(n_components=2, random_state=0, max_iter=2, allow_ref_meg=True)
    with pytest.warns(UserWarning, match='did not converge'):
        icarf.fit(raw.copy().pick_types(meg=False, ref_meg=True))
    icacomps = icarf.get_sources(raw)
    # rename components so they are auto-detected by find_bads_ref
    icacomps.rename_channels({c: 'REF_' + c for c in icacomps.ch_names})
    # and add them to raw
    raw.add_channels([icacomps])
    # set the appropriate EEG channels to EOG and ECG
    raw.set_channel_types({'EEG057': 'eog', 'EEG058': 'eog', 'EEG059': 'ecg'})
    ica = ICA(n_components=4, random_state=0, max_iter=2, method='fastica')
    with pytest.warns(UserWarning, match='did not converge'):
        ica.fit(raw)

    ica.find_bads_eog(raw, l_freq=None, h_freq=None)
    picks = list(pick_types(raw.info, meg=False, eog=True))
    for idx, ch in enumerate(picks):
        assert '{}/{}/{}'.format('eog', idx, raw.ch_names[ch]) in ica.labels_
    assert 'eog' in ica.labels_
    for key in ('ecg', 'ref_meg', 'ecg/ECG-MAG'):
        assert key not in ica.labels_

    ica.find_bads_ecg(raw, l_freq=None, h_freq=None, method='correlation')
    picks = list(pick_types(raw.info, meg=False, ecg=True))
    for idx, ch in enumerate(picks):
        assert '{}/{}/{}'.format('ecg', idx, raw.ch_names[ch]) in ica.labels_
    for key in ('ecg', 'eog'):
        assert key in ica.labels_
    for key in ('ref_meg', 'ecg/ECG-MAG'):
        assert key not in ica.labels_

    ica.find_bads_ref(raw, l_freq=None, h_freq=None)
    picks = pick_channels_regexp(raw.ch_names, 'REF_ICA*')
    for idx, ch in enumerate(picks):
        assert '{}/{}/{}'.format('ref_meg', idx,
                                 raw.ch_names[ch]) in ica.labels_
    for key in ('ecg', 'eog', 'ref_meg'):
        assert key in ica.labels_
    assert 'ecg/ECG-MAG' not in ica.labels_

    ica.find_bads_ecg(raw, l_freq=None, h_freq=None)
    for key in ('ecg', 'eog', 'ref_meg', 'ecg/ECG-MAG'):
        assert key in ica.labels_
Exemplo n.º 17
0
def test_plot_trans():
    """Test plotting of -trans.fif files and MEG sensor layouts."""
    from mayavi import mlab
    evoked = read_evokeds(evoked_fname)[0]
    with warnings.catch_warnings(record=True):  # 4D weight tables
        bti = read_raw_bti(pdf_fname, config_fname, hs_fname, convert=True,
                           preload=False).info
    infos = dict(
        Neuromag=evoked.info,
        CTF=read_raw_ctf(ctf_fname).info,
        BTi=bti,
        KIT=read_raw_kit(sqd_fname).info,
    )
    for system, info in infos.items():
        ref_meg = False if system == 'KIT' else True
        plot_trans(info, trans_fname, subject='sample', meg_sensors=True,
                   subjects_dir=subjects_dir, ref_meg=ref_meg)
        mlab.close(all=True)
    # KIT ref sensor coil def is defined
    plot_trans(infos['KIT'], None, meg_sensors=True, ref_meg=True)
    mlab.close(all=True)
    info = infos['Neuromag']
    assert_raises(ValueError, plot_trans, info, trans_fname,
                  subject='sample', subjects_dir=subjects_dir,
                  ch_type='bad-chtype')
    assert_raises(TypeError, plot_trans, 'foo', trans_fname,
                  subject='sample', subjects_dir=subjects_dir)
    # no-head version
    plot_trans(info, None, meg_sensors=True, dig=True, coord_frame='head')
    mlab.close(all=True)
    # all coord frames
    for coord_frame in ('meg', 'head', 'mri'):
        plot_trans(info, meg_sensors=True, dig=True, coord_frame=coord_frame,
                   trans=trans_fname, subject='sample',
                   subjects_dir=subjects_dir)
        mlab.close(all=True)
    # EEG only with strange options
    evoked_eeg_ecog = evoked.copy().pick_types(meg=False, eeg=True)
    evoked_eeg_ecog.info['projs'] = []  # "remove" avg proj
    evoked_eeg_ecog.set_channel_types({'EEG 001': 'ecog'})
    with warnings.catch_warnings(record=True) as w:
        plot_trans(evoked_eeg_ecog.info, subject='sample', trans=trans_fname,
                   source='outer_skin', meg_sensors=True, skull=True,
                   eeg_sensors=['original', 'projected'], ecog_sensors=True,
                   brain='white', head=True, subjects_dir=subjects_dir)
    mlab.close(all=True)
    assert_true(['Cannot plot MEG' in str(ww.message) for ww in w])
Exemplo n.º 18
0
def test_read_spm_ctf():
    """Test CTF reader with omitted samples."""
    data_path = spm_face.data_path()
    raw_fname = op.join(data_path, 'MEG', 'spm',
                        'SPM_CTF_MEG_example_faces1_3D.ds')
    raw = read_raw_ctf(raw_fname)
    extras = raw._raw_extras[0]
    assert_equal(extras['n_samp'], raw.n_times)
    assert extras['n_samp'] != extras['n_samp_tot']

    # Test that LPA, nasion and RPA are correct.
    coord_frames = np.array([d['coord_frame'] for d in raw.info['dig']])
    assert np.all(coord_frames == FIFF.FIFFV_COORD_HEAD)
    cardinals = {d['ident']: d['r'] for d in raw.info['dig']}
    assert cardinals[1][0] < cardinals[2][0] < cardinals[3][0]  # x coord
    assert cardinals[1][1] < cardinals[2][1]  # y coord
    assert cardinals[3][1] < cardinals[2][1]  # y coord
    for key in cardinals.keys():
        assert_allclose(cardinals[key][2], 0, atol=1e-6)  # z coord
Exemplo n.º 19
0
def test_saving_picked():
    """Test saving picked CTF instances."""
    temp_dir = _TempDir()
    out_fname = op.join(temp_dir, 'test_py_raw.fif')
    raw = read_raw_ctf(op.join(ctf_dir, ctf_fname_1_trial))
    raw.crop(0, 1).load_data()
    assert raw.compensation_grade == get_current_comp(raw.info) == 0
    assert len(raw.info['comps']) == 5
    pick_kwargs = dict(meg=True, ref_meg=False, verbose=True)
    with catch_logging() as log:
        raw_pick = raw.copy().pick_types(**pick_kwargs)
    assert len(raw.info['comps']) == 5
    assert len(raw_pick.info['comps']) == 0
    log = log.getvalue()
    assert 'Removing 5 compensators' in log
    raw_pick.save(out_fname)  # should work
    read_raw_fif(out_fname)
    read_raw_fif(out_fname, preload=True)
    # If comp is applied, picking should error
    raw.apply_gradient_compensation(1)
    assert raw.compensation_grade == get_current_comp(raw.info) == 1
    with pytest.raises(RuntimeError, match='Compensation grade 1 has been'):
        raw.copy().pick_types(**pick_kwargs)
Exemplo n.º 20
0
def test_compute_proj_ctf():
    """Test to show that projector code completes on CTF data."""
    raw = read_raw_ctf(ctf_fname)
    raw.load_data()

    # expected channels per projector type
    n_mags = len(pick_types(raw.info, meg='mag', ref_meg=False,
                            exclude='bads'))
    n_grads = len(pick_types(raw.info, meg='grad', ref_meg=False,
                             exclude='bads'))
    n_eegs = len(pick_types(raw.info, meg=False, eeg=True, ref_meg=False,
                            exclude='bads'))

    # Test with and without gradient compensation
    for c in [0, 1]:
        raw.apply_gradient_compensation(c)
        for average in [False, True]:
            n_projs_init = len(raw.info['projs'])
            projs, events = compute_proj_eog(raw, n_mag=2, n_grad=2, n_eeg=2,
                                             average=average,
                                             ch_name='EEG059',
                                             avg_ref=True, no_proj=False,
                                             l_freq=None, h_freq=None,
                                             reject=None, tmax=dur_use,
                                             filter_length=6000)
            _check_projs_for_expected_channels(projs, n_mags, n_grads, n_eegs)
            assert len(projs) == (5 + n_projs_init)

            projs, events = compute_proj_ecg(raw, n_mag=1, n_grad=1, n_eeg=2,
                                             average=average,
                                             ch_name='EEG059',
                                             avg_ref=True, no_proj=False,
                                             l_freq=None, h_freq=None,
                                             reject=None, tmax=dur_use,
                                             filter_length=6000)
            _check_projs_for_expected_channels(projs, n_mags, n_grads, n_eegs)
            assert len(projs) == (4 + n_projs_init)
Exemplo n.º 21
0
# filtered at 600 Hz. Here the data and empty room data files are read to
# construct instances of :class:`mne.io.Raw`.
data_path = bst_auditory.data_path()

subject = 'bst_auditory'
subjects_dir = op.join(data_path, 'subjects')

raw_fname1 = op.join(data_path, 'MEG', subject, 'S01_AEF_20131218_01.ds')
raw_fname2 = op.join(data_path, 'MEG', subject, 'S01_AEF_20131218_02.ds')
erm_fname = op.join(data_path, 'MEG', subject, 'S01_Noise_20131218_01.ds')

# %%
# In the memory saving mode we use ``preload=False`` and use the memory
# efficient IO which loads the data on demand. However, filtering and some
# other functions require the data to be preloaded into memory.
raw = read_raw_ctf(raw_fname1)
n_times_run1 = raw.n_times

# Here we ignore that these have different device<->head transforms
mne.io.concatenate_raws([raw, read_raw_ctf(raw_fname2)], on_mismatch='ignore')
raw_erm = read_raw_ctf(erm_fname)

# %%
# The data array consists of 274 MEG axial gradiometers, 26 MEG reference
# sensors and 2 EEG electrodes (Cz and Pz). In addition:
#
#   - 1 stim channel for marking presentation times for the stimuli
#   - 1 audio channel for the sent signal
#   - 1 response channel for recording the button presses
#   - 1 ECG bipolar
#   - 2 EOG bipolar (vertical and horizontal)
Exemplo n.º 22
0
import os.path as op

from mayavi import mlab

import mne
from mne.io import Raw, read_raw_ctf, read_raw_bti, read_raw_kit
from mne.datasets import sample, spm_face
from mne.viz import plot_trans

print(__doc__)

bti_path = op.abspath(op.dirname(mne.__file__)) + '/io/bti/tests/data/'
kit_path = op.abspath(op.dirname(mne.__file__)) + '/io/kit/tests/data/'
raws = dict(
    Neuromag=Raw(sample.data_path() + '/MEG/sample/sample_audvis_raw.fif'),
    CTF_275=read_raw_ctf(spm_face.data_path() +
                         '/MEG/spm/SPM_CTF_MEG_example_faces1_3D.ds'),
    Magnes_3600wh=read_raw_bti(bti_path + 'test_pdf_linux',
                               bti_path + 'test_config_linux',
                               bti_path + 'test_hs_linux'),
    KIT=read_raw_kit(kit_path + 'test.sqd'),
)

for system, raw in raws.items():
    # We don't have coil definitions for KIT refs, so exclude them
    ref_meg = False if system == 'KIT' else True
    fig = plot_trans(raw.info, trans=None, dig=False, eeg_sensors=False,
                     meg_sensors=True, coord_frame='meg', ref_meg=ref_meg)
    mlab.title(system)
import mne
from mne.datasets.brainstorm import bst_auditory
from mne.io import read_raw_ctf
from mne.preprocessing import annotate_movement, compute_average_dev_head_t

# Load data
data_path = bst_auditory.data_path()
data_path_MEG = op.join(data_path, 'MEG')
subject = 'bst_auditory'
subjects_dir = op.join(data_path, 'subjects')
trans_fname = op.join(data_path, 'MEG', 'bst_auditory',
                      'bst_auditory-trans.fif')
raw_fname1 = op.join(data_path_MEG, 'bst_auditory', 'S01_AEF_20131218_01.ds')
raw_fname2 = op.join(data_path_MEG, 'bst_auditory', 'S01_AEF_20131218_02.ds')

raw = read_raw_ctf(raw_fname1, preload=False)

mne.io.concatenate_raws([raw, read_raw_ctf(raw_fname2, preload=False)])
raw.crop(350, 410).load_data()
raw.resample(100, npad="auto")

###############################################################################
# Plot continuous head position with respect to the mean recording position
# --------------------------------------------------------------------------

# get cHPI time series and compute average
chpi_locs = mne.chpi.extract_chpi_locs_ctf(raw)
head_pos = mne.chpi.compute_head_pos(raw.info, chpi_locs)
original_head_dev_t = mne.transforms.invert_transform(
    raw.info['dev_head_t'])
average_head_dev_t = mne.transforms.invert_transform(
Exemplo n.º 24
0
    def _run_interface(self, runtime):

        raw_filename = self.inputs.raw_filename
        cov_fname_in = self.inputs.cov_fname_in
        is_epoched = self.inputs.is_epoched
        is_evoked = self.inputs.is_evoked
        events_id = self.inputs.events_id
        t_min = self.inputs.t_min
        t_max = self.inputs.t_max

        data_path, basename, ext = split_f(raw_filename)

        self.cov_fname_out = op.join(data_path, '%s-cov.fif' % basename)

        if not op.isfile(cov_fname_in):
            if is_epoched and is_evoked:
                raw = read_raw_fif(raw_filename)
                events = find_events(raw)

                if not op.isfile(self.cov_fname_out):
                    print(('\n*** COMPUTE COV FROM EPOCHS ***\n' +
                           self.cov_fname_out))

                    reject = create_reject_dict(raw.info)
                    picks = pick_types(raw.info,
                                       meg=True,
                                       ref_meg=False,
                                       exclude='bads')

                    epochs = Epochs(raw,
                                    events,
                                    events_id,
                                    t_min,
                                    t_max,
                                    picks=picks,
                                    baseline=(None, 0),
                                    reject=reject)

                    # TODO method='auto'? too long!!!
                    noise_cov = compute_covariance(epochs,
                                                   tmax=0,
                                                   method='diagonal_fixed')
                    write_cov(self.cov_fname_out, noise_cov)
                else:
                    print(('\n *** NOISE cov file %s exists!!! \n' %
                           self.cov_fname_out))
            else:
                '\n *** RAW DATA \n'
                for er_fname in glob.glob(op.join(data_path, cov_fname_in)):
                    print(('\n found file name %s  \n' % er_fname))

                try:
                    if er_fname.rfind('cov.fif') > -1:
                        print("\n *** NOISE cov file %s exists!! "
                              "\n" % er_fname)
                        self.cov_fname_out = er_fname
                    else:
                        if er_fname.rfind('.fif') > -1:
                            er_raw = read_raw_fif(er_fname)
                            er_fname = er_fname.replace('.fif', '-raw-cov.fif')
                        elif er_fname.rfind('.ds') > -1:
                            er_raw = read_raw_ctf(er_fname)
                            er_fname = er_fname.replace('.ds', '-raw-cov.fif')

                        self.cov_fname_out = op.join(data_path, er_fname)

                        if not op.isfile(self.cov_fname_out):
                            reject = create_reject_dict(er_raw.info)
                            picks = pick_types(er_raw.info,
                                               meg=True,
                                               ref_meg=False,
                                               exclude='bads')

                            noise_cov = compute_raw_covariance(er_raw,
                                                               picks=picks,
                                                               reject=reject)
                            write_cov(self.cov_fname_out, noise_cov)
                        else:
                            print(('\n *** NOISE cov file %s exists!!! \n' %
                                   self.cov_fname_out))
                except NameError:
                    sys.exit("No covariance matrix as input!")
                    # TODO creare una matrice diagonale?

        else:
            print(('\n *** NOISE cov file %s exists!!! \n' % cov_fname_in))
            self.cov_fname_out = cov_fname_in

        return runtime
Exemplo n.º 25
0
def test_plot_alignment(tmpdir):
    """Test plotting of -trans.fif files and MEG sensor layouts."""
    # generate fiducials file for testing
    tempdir = str(tmpdir)
    fiducials_path = op.join(tempdir, 'fiducials.fif')
    fid = [{'coord_frame': 5, 'ident': 1, 'kind': 1,
            'r': [-0.08061612, -0.02908875, -0.04131077]},
           {'coord_frame': 5, 'ident': 2, 'kind': 1,
            'r': [0.00146763, 0.08506715, -0.03483611]},
           {'coord_frame': 5, 'ident': 3, 'kind': 1,
            'r': [0.08436285, -0.02850276, -0.04127743]}]
    write_dig(fiducials_path, fid, 5)

    mlab = _import_mlab()
    evoked = read_evokeds(evoked_fname)[0]
    sample_src = read_source_spaces(src_fname)
    bti = read_raw_bti(pdf_fname, config_fname, hs_fname, convert=True,
                       preload=False).info
    infos = dict(
        Neuromag=evoked.info,
        CTF=read_raw_ctf(ctf_fname).info,
        BTi=bti,
        KIT=read_raw_kit(sqd_fname).info,
    )
    for system, info in infos.items():
        meg = ['helmet', 'sensors']
        if system == 'KIT':
            meg.append('ref')
        plot_alignment(info, trans_fname, subject='sample',
                       subjects_dir=subjects_dir, meg=meg)
        mlab.close(all=True)
    # KIT ref sensor coil def is defined
    mlab.close(all=True)
    info = infos['Neuromag']
    pytest.raises(TypeError, plot_alignment, 'foo', trans_fname,
                  subject='sample', subjects_dir=subjects_dir)
    pytest.raises(TypeError, plot_alignment, info, trans_fname,
                  subject='sample', subjects_dir=subjects_dir, src='foo')
    pytest.raises(ValueError, plot_alignment, info, trans_fname,
                  subject='fsaverage', subjects_dir=subjects_dir,
                  src=sample_src)
    sample_src.plot(subjects_dir=subjects_dir, head=True, skull=True,
                    brain='white')
    mlab.close(all=True)
    # no-head version
    mlab.close(all=True)
    # all coord frames
    pytest.raises(ValueError, plot_alignment, info)
    plot_alignment(info, surfaces=[])
    for coord_frame in ('meg', 'head', 'mri'):
        plot_alignment(info, meg=['helmet', 'sensors'], dig=True,
                       coord_frame=coord_frame, trans=trans_fname,
                       subject='sample', mri_fiducials=fiducials_path,
                       subjects_dir=subjects_dir, src=sample_src)
        mlab.close(all=True)
    # EEG only with strange options
    evoked_eeg_ecog_seeg = evoked.copy().pick_types(meg=False, eeg=True)
    evoked_eeg_ecog_seeg.info['projs'] = []  # "remove" avg proj
    evoked_eeg_ecog_seeg.set_channel_types({'EEG 001': 'ecog',
                                            'EEG 002': 'seeg'})
    with pytest.warns(RuntimeWarning, match='Cannot plot MEG'):
        plot_alignment(evoked_eeg_ecog_seeg.info, subject='sample',
                       trans=trans_fname, subjects_dir=subjects_dir,
                       surfaces=['white', 'outer_skin', 'outer_skull'],
                       meg=['helmet', 'sensors'],
                       eeg=['original', 'projected'], ecog=True, seeg=True)
    mlab.close(all=True)

    sphere = make_sphere_model(info=evoked.info, r0='auto', head_radius='auto')
    bem_sol = read_bem_solution(op.join(subjects_dir, 'sample', 'bem',
                                        'sample-1280-1280-1280-bem-sol.fif'))
    bem_surfs = read_bem_surfaces(op.join(subjects_dir, 'sample', 'bem',
                                          'sample-1280-1280-1280-bem.fif'))
    sample_src[0]['coord_frame'] = 4  # hack for coverage
    plot_alignment(info, subject='sample', eeg='projected',
                   meg='helmet', bem=sphere, dig=True,
                   surfaces=['brain', 'inner_skull', 'outer_skull',
                             'outer_skin'])
    plot_alignment(info, trans_fname, subject='sample', meg='helmet',
                   subjects_dir=subjects_dir, eeg='projected', bem=sphere,
                   surfaces=['head', 'brain'], src=sample_src)
    assert all(surf['coord_frame'] == FIFF.FIFFV_COORD_MRI
               for surf in bem_sol['surfs'])
    plot_alignment(info, trans_fname, subject='sample', meg=[],
                   subjects_dir=subjects_dir, bem=bem_sol, eeg=True,
                   surfaces=['head', 'inflated', 'outer_skull', 'inner_skull'])
    assert all(surf['coord_frame'] == FIFF.FIFFV_COORD_MRI
               for surf in bem_sol['surfs'])
    plot_alignment(info, trans_fname, subject='sample',
                   meg=True, subjects_dir=subjects_dir,
                   surfaces=['head', 'inner_skull'], bem=bem_surfs)
    sphere = make_sphere_model('auto', 'auto', evoked.info)
    src = setup_volume_source_space(sphere=sphere)
    plot_alignment(info, eeg='projected', meg='helmet', bem=sphere,
                   src=src, dig=True, surfaces=['brain', 'inner_skull',
                                                'outer_skull', 'outer_skin'])
    sphere = make_sphere_model('auto', None, evoked.info)  # one layer
    plot_alignment(info, trans_fname, subject='sample', meg=False,
                   coord_frame='mri', subjects_dir=subjects_dir,
                   surfaces=['brain'], bem=sphere, show_axes=True)

    # 3D coil with no defined draw (ConvexHull)
    info_cube = pick_info(info, [0])
    info['dig'] = None
    info_cube['chs'][0]['coil_type'] = 9999
    with pytest.raises(RuntimeError, match='coil definition not found'):
        plot_alignment(info_cube, meg='sensors', surfaces=())
    coil_def_fname = op.join(tempdir, 'temp')
    with open(coil_def_fname, 'w') as fid:
        fid.write(coil_3d)
    with use_coil_def(coil_def_fname):
        plot_alignment(info_cube, meg='sensors', surfaces=(), dig=True)

    # one layer bem with skull surfaces:
    pytest.raises(ValueError, plot_alignment, info=info, trans=trans_fname,
                  subject='sample', subjects_dir=subjects_dir,
                  surfaces=['brain', 'head', 'inner_skull'], bem=sphere)
    # wrong eeg value:
    pytest.raises(ValueError, plot_alignment, info=info, trans=trans_fname,
                  subject='sample', subjects_dir=subjects_dir, eeg='foo')
    # wrong meg value:
    pytest.raises(ValueError, plot_alignment, info=info, trans=trans_fname,
                  subject='sample', subjects_dir=subjects_dir, meg='bar')
    # multiple brain surfaces:
    pytest.raises(ValueError, plot_alignment, info=info, trans=trans_fname,
                  subject='sample', subjects_dir=subjects_dir,
                  surfaces=['white', 'pial'])
    pytest.raises(TypeError, plot_alignment, info=info, trans=trans_fname,
                  subject='sample', subjects_dir=subjects_dir,
                  surfaces=[1])
    pytest.raises(ValueError, plot_alignment, info=info, trans=trans_fname,
                  subject='sample', subjects_dir=subjects_dir,
                  surfaces=['foo'])
    mlab.close(all=True)
from mne.datasets.brainstorm import bst_phantom_ctf
from mne.io import read_raw_ctf

print(__doc__)

###############################################################################
# The data were collected with a CTF system at 2400 Hz.
data_path = bst_phantom_ctf.data_path(verbose=True)

# Switch to these to use the higher-SNR data:
# raw_path = op.join(data_path, 'phantom_200uA_20150709_01.ds')
# dip_freq = 7.
raw_path = op.join(data_path, 'phantom_20uA_20150603_03.ds')
dip_freq = 23.
erm_path = op.join(data_path, 'emptyroom_20150709_01.ds')
raw = read_raw_ctf(raw_path, preload=True)

###############################################################################
# The sinusoidal signal is generated on channel HDAC006, so we can use
# that to obtain precise timing.

sinusoid, times = raw[raw.ch_names.index('HDAC006-4408')]
plt.figure()
plt.plot(times[times < 1.], sinusoid.T[times < 1.])

###############################################################################
# Let's create some events using this signal by thresholding the sinusoid.

events = np.where(np.diff(sinusoid > 0.5) > 0)[1] + raw.first_samp
events = np.vstack((events, np.zeros_like(events), np.ones_like(events))).T
Exemplo n.º 27
0
def test_plot_trans():
    """Test plotting of -trans.fif files and MEG sensor layouts."""
    # generate fiducials file for testing
    tempdir = _TempDir()
    fiducials_path = op.join(tempdir, 'fiducials.fif')
    fid = [{
        'coord_frame': 5,
        'ident': 1,
        'kind': 1,
        'r': [-0.08061612, -0.02908875, -0.04131077]
    }, {
        'coord_frame': 5,
        'ident': 2,
        'kind': 1,
        'r': [0.00146763, 0.08506715, -0.03483611]
    }, {
        'coord_frame': 5,
        'ident': 3,
        'kind': 1,
        'r': [0.08436285, -0.02850276, -0.04127743]
    }]
    write_dig(fiducials_path, fid, 5)

    mlab = _import_mlab()
    evoked = read_evokeds(evoked_fname)[0]
    sample_src = read_source_spaces(src_fname)
    with warnings.catch_warnings(record=True):  # 4D weight tables
        bti = read_raw_bti(pdf_fname,
                           config_fname,
                           hs_fname,
                           convert=True,
                           preload=False).info
    infos = dict(
        Neuromag=evoked.info,
        CTF=read_raw_ctf(ctf_fname).info,
        BTi=bti,
        KIT=read_raw_kit(sqd_fname).info,
    )
    for system, info in infos.items():
        ref_meg = False if system == 'KIT' else True
        plot_trans(info,
                   trans_fname,
                   subject='sample',
                   meg_sensors=True,
                   subjects_dir=subjects_dir,
                   ref_meg=ref_meg)
        mlab.close(all=True)
    # KIT ref sensor coil def is defined
    plot_trans(infos['KIT'], None, meg_sensors=True, ref_meg=True)
    mlab.close(all=True)
    info = infos['Neuromag']
    assert_raises(TypeError,
                  plot_trans,
                  'foo',
                  trans_fname,
                  subject='sample',
                  subjects_dir=subjects_dir)
    assert_raises(TypeError,
                  plot_trans,
                  info,
                  trans_fname,
                  subject='sample',
                  subjects_dir=subjects_dir,
                  src='foo')
    assert_raises(ValueError,
                  plot_trans,
                  info,
                  trans_fname,
                  subject='fsaverage',
                  subjects_dir=subjects_dir,
                  src=sample_src)
    sample_src.plot(subjects_dir=subjects_dir)
    mlab.close(all=True)
    # no-head version
    plot_trans(info, None, meg_sensors=True, dig=True, coord_frame='head')
    mlab.close(all=True)
    # all coord frames
    for coord_frame in ('meg', 'head', 'mri'):
        plot_trans(info,
                   meg_sensors=True,
                   dig=True,
                   coord_frame=coord_frame,
                   trans=trans_fname,
                   subject='sample',
                   mri_fiducials=fiducials_path,
                   subjects_dir=subjects_dir)
        mlab.close(all=True)
    # EEG only with strange options
    evoked_eeg_ecog = evoked.copy().pick_types(meg=False, eeg=True)
    evoked_eeg_ecog.info['projs'] = []  # "remove" avg proj
    evoked_eeg_ecog.set_channel_types({'EEG 001': 'ecog'})
    with warnings.catch_warnings(record=True) as w:
        plot_trans(evoked_eeg_ecog.info,
                   subject='sample',
                   trans=trans_fname,
                   source='outer_skin',
                   meg_sensors=True,
                   skull=True,
                   eeg_sensors=['original', 'projected'],
                   ecog_sensors=True,
                   brain='white',
                   head=True,
                   subjects_dir=subjects_dir)
    mlab.close(all=True)
    assert_true(['Cannot plot MEG' in str(ww.message) for ww in w])
from mne import io
from mne.datasets import spm_face
from mne.minimum_norm import apply_inverse, make_inverse_operator
from mne.cov import compute_covariance

print(__doc__)

##############################################################################
# Get data

data_path = spm_face.data_path()
subjects_dir = data_path + '/subjects'

raw_fname = data_path + '/MEG/spm/SPM_CTF_MEG_example_faces%d_3D.ds'

raw = io.read_raw_ctf(raw_fname % 1)  # Take first run
# To save time and memory for this demo, we'll just use the first
# 2.5 minutes (all we need to get 30 total events) and heavily
# resample 480->60 Hz (usually you wouldn't do either of these!)
raw = raw.crop(0, 150.).load_data().resample(60, npad='auto')

picks = mne.pick_types(raw.info, meg=True, exclude='bads')
raw.filter(1, None, n_jobs=1)

events = mne.find_events(raw, stim_channel='UPPT001')

event_ids = {"faces": 1, "scrambled": 2}
tmin, tmax = -0.2, 0.5
baseline = None  # no baseline as high-pass is applied
reject = dict(mag=3e-12)
Exemplo n.º 29
0
# %%
# Neuromag
# --------

kwargs = dict(eeg=False, coord_frame='meg', show_axes=True, verbose=True)

raw = read_raw_fif(sample.data_path() / 'MEG' / 'sample' /
                   'sample_audvis_raw.fif')
fig = plot_alignment(raw.info, meg=('helmet', 'sensors'), **kwargs)
set_3d_title(figure=fig, title='Neuromag')

# %%
# CTF
# ---

raw = read_raw_ctf(spm_face.data_path() / 'MEG' / 'spm' /
                   'SPM_CTF_MEG_example_faces1_3D.ds')
fig = plot_alignment(raw.info, meg=('helmet', 'sensors', 'ref'), **kwargs)
set_3d_title(figure=fig, title='CTF 275')

# %%
# BTi
# ---

bti_path = op.abspath(op.dirname(mne.__file__)) + '/io/bti/tests/data/'
raw = read_raw_bti(op.join(bti_path, 'test_pdf_linux'),
                   op.join(bti_path, 'test_config_linux'),
                   op.join(bti_path, 'test_hs_linux'))
fig = plot_alignment(raw.info, meg=('helmet', 'sensors', 'ref'), **kwargs)
set_3d_title(figure=fig, title='Magnes 3600wh')

# %%
Exemplo n.º 30
0
#! /usr/bin/env python

import os
import numpy as np
import pyctf
import mne
from mne.io import read_raw_ctf

tmin, tmax = -0.1, 0.5

raw_path = os.getenv('ds')
raw = read_raw_ctf(raw_path, clean_names=True, preload=True)
ds = pyctf.dsopen(raw_path)

# pick MEG channels
picks = mne.pick_types(raw.info, meg='mag', eeg=False, stim=True)

# Compute epochs
events = mne.find_events(raw, stim_channel='UPPT001')

m = 'pic1'

srate = raw.info['sfreq']
tlen = ds.getNumberOfSamples()
ev = []
for tr, t in ds.marks[m]:
    s = tr * tlen + int(t * srate + .5)
    ev.append([s, 0, 1])

epochs = mne.Epochs(raw, ev, {'pic1': 1}, tmin, tmax, picks=picks,
                    baseline=(None, 0), reject=None, preload=False)
Exemplo n.º 31
0
from saflow_utils import array_topoplot, get_ch_pos, create_pval_mask
from saflow_params import IMG_DIR, SUBJ_LIST, RESULTS_PATH, FREQS_NAMES
import itertools
from mlneurotools.stats import compute_pval

RESULTS_PATH = RESULTS_PATH + 'LDA_singlesubj_L1SO_PSD_VTC2575'
MODEL = 'LDA'
NPERM = 1001
CV = '10FOLD'
COND = 2575


if __name__ == "__main__":
    ##### obtain ch_pos
    filename = '/storage/Yann/saflow_DATA/alldata/SA04_SAflow-yharel_20190411_01.ds'
    raw = read_raw_ctf(filename, preload=False, verbose=False)
    ch_xy = get_ch_pos(raw)
    raw.close()
    for SUBJ in SUBJ_LIST:
        all_acc = []
        all_pval = []
        all_masks = []
        for FREQ in FREQS_NAMES:
            freq_acc = []
            freq_pval = []
            freq_perms_acc = []
            for CHAN in range(270):
                savepath = '{}/classif_sub-{}_{}_{}.mat'.format(RESULTS_PATH, SUBJ, FREQ, CHAN)
                data_acc = loadmat(savepath)['acc_score']
                data_pval = loadmat(savepath)['acc_pvalue']
                data_perms_acc = loadmat(savepath)['acc_pscores']
Exemplo n.º 32
0
def test_ica_eeg():
    """Test ICA on EEG."""
    method = 'fastica'
    raw_fif = read_raw_fif(fif_fname, preload=True)
    raw_eeglab = read_raw_eeglab(input_fname=eeglab_fname,
                                 montage=eeglab_montage,
                                 preload=True)
    for raw in [raw_fif, raw_eeglab]:
        events = make_fixed_length_events(raw,
                                          99999,
                                          start=0,
                                          stop=0.3,
                                          duration=0.1)
        picks_meg = pick_types(raw.info, meg=True, eeg=False)[:2]
        picks_eeg = pick_types(raw.info, meg=False, eeg=True)[:2]
        picks_all = []
        picks_all.extend(picks_meg)
        picks_all.extend(picks_eeg)
        epochs = Epochs(raw, events, None, -0.1, 0.1, preload=True)
        evoked = epochs.average()

        for picks in [picks_meg, picks_eeg, picks_all]:
            if len(picks) == 0:
                continue
            # test fit
            for inst in [raw, epochs]:
                ica = ICA(n_components=2,
                          random_state=0,
                          max_iter=2,
                          method=method)
                with pytest.warns(None):
                    ica.fit(inst, picks=picks)

            # test apply and get_sources
            for inst in [raw, epochs, evoked]:
                ica.apply(inst)
                ica.get_sources(inst)

    with pytest.warns(RuntimeWarning, match='MISC channel'):
        raw = read_raw_ctf(ctf_fname2, preload=True)
    events = make_fixed_length_events(raw,
                                      99999,
                                      start=0,
                                      stop=0.2,
                                      duration=0.1)
    picks_meg = pick_types(raw.info, meg=True, eeg=False)[:2]
    picks_eeg = pick_types(raw.info, meg=False, eeg=True)[:2]
    picks_all = picks_meg + picks_eeg
    for comp in [0, 1]:
        raw.apply_gradient_compensation(comp)
        epochs = Epochs(raw, events, None, -0.1, 0.1, preload=True)
        evoked = epochs.average()

        for picks in [picks_meg, picks_eeg, picks_all]:
            if len(picks) == 0:
                continue
            # test fit
            for inst in [raw, epochs]:
                ica = ICA(n_components=2,
                          random_state=0,
                          max_iter=2,
                          method=method)
                with pytest.warns(None):
                    ica.fit(inst)

            # test apply and get_sources
            for inst in [raw, epochs, evoked]:
                ica.apply(inst)
                ica.get_sources(inst)
Exemplo n.º 33
0
def test_channel_name_limit(tmpdir, monkeypatch, fname):
    """Test that our remapping works properly."""
    #
    # raw
    #
    if fname.endswith('fif'):
        raw = read_raw_fif(fname)
        raw.pick_channels(raw.ch_names[:3])
        ref_names = []
        data_names = raw.ch_names
    else:
        assert fname.endswith('.ds')
        raw = read_raw_ctf(fname)
        ref_names = [
            raw.ch_names[pick]
            for pick in pick_types(raw.info, meg=False, ref_meg=True)
        ]
        data_names = raw.ch_names[32:35]
    proj = dict(data=np.ones((1, len(data_names))),
                col_names=data_names[:2].copy(),
                row_names=None,
                nrow=1)
    proj = Projection(data=proj,
                      active=False,
                      desc='test',
                      kind=0,
                      explained_var=0.)
    raw.add_proj(proj, remove_existing=True)
    raw.info.normalize_proj()
    raw.pick_channels(data_names + ref_names).crop(0, 2)
    long_names = ['123456789abcdefg' + name for name in raw.ch_names]
    fname = tmpdir.join('test-raw.fif')
    with catch_logging() as log:
        raw.save(fname)
    log = log.getvalue()
    assert 'truncated' not in log
    rename = dict(zip(raw.ch_names, long_names))
    long_data_names = [rename[name] for name in data_names]
    long_proj_names = long_data_names[:2]
    raw.rename_channels(rename)
    for comp in raw.info['comps']:
        for key in ('row_names', 'col_names'):
            for name in comp['data'][key]:
                assert name in raw.ch_names
    if raw.info['comps']:
        assert raw.compensation_grade == 0
        raw.apply_gradient_compensation(3)
        assert raw.compensation_grade == 3
    assert len(raw.info['projs']) == 1
    assert raw.info['projs'][0]['data']['col_names'] == long_proj_names
    raw.info['bads'] = bads = long_data_names[2:3]
    good_long_data_names = [
        name for name in long_data_names if name not in bads
    ]
    with catch_logging() as log:
        raw.save(fname, overwrite=True, verbose=True)
    log = log.getvalue()
    assert 'truncated to 15' in log
    for name in raw.ch_names:
        assert len(name) > 15
    # first read the full way
    with catch_logging() as log:
        raw_read = read_raw_fif(fname, verbose=True)
    log = log.getvalue()
    assert 'Reading extended channel information' in log
    for ra in (raw, raw_read):
        assert ra.ch_names == long_names
    assert raw_read.info['projs'][0]['data']['col_names'] == long_proj_names
    del raw_read
    # next read as if no longer names could be read
    monkeypatch.setattr(meas_info, '_read_extended_ch_info',
                        lambda x, y, z: None)
    with catch_logging() as log:
        raw_read = read_raw_fif(fname, verbose=True)
    log = log.getvalue()
    assert 'extended' not in log
    if raw.info['comps']:
        assert raw_read.compensation_grade == 3
        raw_read.apply_gradient_compensation(0)
        assert raw_read.compensation_grade == 0
    monkeypatch.setattr(  # restore
        meas_info, '_read_extended_ch_info', _read_extended_ch_info)
    short_proj_names = [
        f'{name[:13 - bool(len(ref_names))]}-{len(ref_names) + ni}'
        for ni, name in enumerate(long_data_names[:2])
    ]
    assert raw_read.info['projs'][0]['data']['col_names'] == short_proj_names
    #
    # epochs
    #
    epochs = Epochs(raw, make_fixed_length_events(raw))
    fname = tmpdir.join('test-epo.fif')
    epochs.save(fname)
    epochs_read = read_epochs(fname)
    for ep in (epochs, epochs_read):
        assert ep.info['ch_names'] == long_names
        assert ep.ch_names == long_names
    del raw, epochs_read
    # cov
    epochs.info['bads'] = []
    cov = compute_covariance(epochs, verbose='error')
    fname = tmpdir.join('test-cov.fif')
    write_cov(fname, cov)
    cov_read = read_cov(fname)
    for co in (cov, cov_read):
        assert co['names'] == long_data_names
        assert co['bads'] == []
    del cov_read

    #
    # evoked
    #
    evoked = epochs.average()
    evoked.info['bads'] = bads
    assert evoked.nave == 1
    fname = tmpdir.join('test-ave.fif')
    evoked.save(fname)
    evoked_read = read_evokeds(fname)[0]
    for ev in (evoked, evoked_read):
        assert ev.ch_names == long_names
        assert ev.info['bads'] == bads
    del evoked_read, epochs

    #
    # forward
    #
    with pytest.warns(None):  # not enough points for CTF
        sphere = make_sphere_model('auto', 'auto', evoked.info)
    src = setup_volume_source_space(
        pos=dict(rr=[[0, 0, 0.04]], nn=[[0, 1., 0.]]))
    fwd = make_forward_solution(evoked.info, None, src, sphere)
    fname = tmpdir.join('temp-fwd.fif')
    write_forward_solution(fname, fwd)
    fwd_read = read_forward_solution(fname)
    for fw in (fwd, fwd_read):
        assert fw['sol']['row_names'] == long_data_names
        assert fw['info']['ch_names'] == long_data_names
        assert fw['info']['bads'] == bads
    del fwd_read

    #
    # inv
    #
    inv = make_inverse_operator(evoked.info, fwd, cov)
    fname = tmpdir.join('test-inv.fif')
    write_inverse_operator(fname, inv)
    inv_read = read_inverse_operator(fname)
    for iv in (inv, inv_read):
        assert iv['info']['ch_names'] == good_long_data_names
    apply_inverse(evoked, inv)  # smoke test
Exemplo n.º 34
0
subject = 'bst_auditory'
subjects_dir = op.join(data_path, 'subjects')

raw_fname1 = op.join(data_path, 'MEG', 'bst_auditory',
                     'S01_AEF_20131218_01.ds')
raw_fname2 = op.join(data_path, 'MEG', 'bst_auditory',
                     'S01_AEF_20131218_02.ds')
erm_fname = op.join(data_path, 'MEG', 'bst_auditory',
                    'S01_Noise_20131218_01.ds')

###############################################################################
# In the memory saving mode we use ``preload=False`` and use the memory
# efficient IO which loads the data on demand. However, filtering and some
# other functions require the data to be preloaded in the memory.
raw = read_raw_ctf(raw_fname1)
n_times_run1 = raw.n_times
mne.io.concatenate_raws([raw, read_raw_ctf(raw_fname2)])
raw_erm = read_raw_ctf(erm_fname)

###############################################################################
# Data channel array consisted of 274 MEG axial gradiometers, 26 MEG reference
# sensors and 2 EEG electrodes (Cz and Pz).
# In addition:
#
#   - 1 stim channel for marking presentation times for the stimuli
#   - 1 audio channel for the sent signal
#   - 1 response channel for recording the button presses
#   - 1 ECG bipolar
#   - 2 EOG bipolar (vertical and horizontal)
#   - 12 head tracking channels
Exemplo n.º 35
0
import numpy as np

import mne
from mne.datasets.brainstorm import bst_raw
from mne.io import read_raw_ctf

print(__doc__)

tmin, tmax, event_id = -0.1, 0.3, 2  # take right-hand somato
reject = dict(mag=4e-12, eog=250e-6)

data_path = bst_raw.data_path()

raw_path = (data_path + '/MEG/bst_raw/' +
            'subj001_somatosensory_20111109_01_AUX-f.ds')
raw = read_raw_ctf(raw_path, preload=True)
raw.plot()

# set EOG channel
raw.set_channel_types({'EEG058': 'eog'})
raw.set_eeg_reference('average', projection=True)

# show power line interference and remove it
raw.plot_psd(tmax=60., average=False)
raw.notch_filter(np.arange(60, 181, 60), fir_design='firwin')

events = mne.find_events(raw, stim_channel='UPPT001')

# pick MEG channels
picks = mne.pick_types(raw.info, meg=True, eeg=False, stim=False, eog=True,
                       exclude='bads')
Exemplo n.º 36
0
    # Behavioral data path
    fname_bhv = path(op.join(path_data, subject, 'behavdata')).glob('*.csv')

    # Read behavioral file
    for fname_behavior in fname_bhv:
        events_behavior = get_events_from_mat(fname_behavior)
    # Read all raw to extract MEG event triggers
    runs = path(fname_raw).glob('*.ds')
    events_meg = list()
    run_number = 1
    for run in runs:
        fname_raw = op.join(path_data, subject, run)
        print(fname_raw)
        # get raw and events from raw file (need non standard manipulation
        # because trigger baseline is 255 and not 0)
        raw = read_raw_ctf(fname_raw, preload=True, system_clock='ignore')

        channel_trigger = np.where(np.array(raw.ch_names) == 'USPT001')[0][0]
        # find where the trigger == 255
        trigger_baseline = np.where(raw._data[channel_trigger, :] == 255)[0]
        # replace 255 values with 0
        raw._data[channel_trigger, trigger_baseline] = 0.
        # find correct triggers
        events_meg_ = mne.find_events(raw)

        # to keep the run from which the event was found
        events_meg_[:, 1] = run_number
        events_meg.append(events_meg_)
        run_number = run_number + 1
    events_meg = np.vstack(events_meg)  # concatenate all meg events
Exemplo n.º 37
0
def test_read_ctf():
    """Test CTF reader"""
    temp_dir = _TempDir()
    out_fname = op.join(temp_dir, 'test_py_raw.fif')

    # Create a dummy .eeg file so we can test our reading/application of it
    os.mkdir(op.join(temp_dir, 'randpos'))
    ctf_eeg_fname = op.join(temp_dir, 'randpos', ctf_fname_catch)
    shutil.copytree(op.join(ctf_dir, ctf_fname_catch), ctf_eeg_fname)
    with warnings.catch_warnings(record=True) as w:  # reclassified ch
        raw = _test_raw_reader(read_raw_ctf, directory=ctf_eeg_fname)
    assert_true(all('MISC channel' in str(ww.message) for ww in w))
    picks = pick_types(raw.info, meg=False, eeg=True)
    pos = np.random.RandomState(42).randn(len(picks), 3)
    fake_eeg_fname = op.join(ctf_eeg_fname, 'catch-alp-good-f.eeg')
    # Create a bad file
    with open(fake_eeg_fname, 'wb') as fid:
        fid.write('foo\n'.encode('ascii'))
    assert_raises(RuntimeError, read_raw_ctf, ctf_eeg_fname)
    # Create a good file
    with open(fake_eeg_fname, 'wb') as fid:
        for ii, ch_num in enumerate(picks):
            args = (str(ch_num + 1), raw.ch_names[ch_num],) + tuple(
                '%0.5f' % x for x in 100 * pos[ii])  # convert to cm
            fid.write(('\t'.join(args) + '\n').encode('ascii'))
    pos_read_old = np.array([raw.info['chs'][p]['loc'][:3] for p in picks])
    with warnings.catch_warnings(record=True) as w:  # reclassified channel
        raw = read_raw_ctf(ctf_eeg_fname)  # read modified data
    assert_true(all('MISC channel' in str(ww.message) for ww in w))
    pos_read = np.array([raw.info['chs'][p]['loc'][:3] for p in picks])
    assert_allclose(apply_trans(raw.info['ctf_head_t'], pos), pos_read,
                    rtol=1e-5, atol=1e-5)
    assert_true((pos_read == pos_read_old).mean() < 0.1)
    shutil.copy(op.join(ctf_dir, 'catch-alp-good-f.ds_randpos_raw.fif'),
                op.join(temp_dir, 'randpos', 'catch-alp-good-f.ds_raw.fif'))

    # Create a version with no hc, starting out *with* EEG pos (error)
    os.mkdir(op.join(temp_dir, 'nohc'))
    ctf_no_hc_fname = op.join(temp_dir, 'no_hc', ctf_fname_catch)
    shutil.copytree(ctf_eeg_fname, ctf_no_hc_fname)
    remove_base = op.join(ctf_no_hc_fname, op.basename(ctf_fname_catch[:-3]))
    os.remove(remove_base + '.hc')
    with warnings.catch_warnings(record=True):  # no coord tr
        assert_raises(RuntimeError, read_raw_ctf, ctf_no_hc_fname)
    os.remove(remove_base + '.eeg')
    shutil.copy(op.join(ctf_dir, 'catch-alp-good-f.ds_nohc_raw.fif'),
                op.join(temp_dir, 'no_hc', 'catch-alp-good-f.ds_raw.fif'))

    # All our files
    use_fnames = [op.join(ctf_dir, c) for c in ctf_fnames]
    for fname in use_fnames:
        raw_c = Raw(fname + '_raw.fif', add_eeg_ref=False, preload=True)
        with warnings.catch_warnings(record=True) as w:  # reclassified ch
            raw = read_raw_ctf(fname)
        assert_true(all('MISC channel' in str(ww.message) for ww in w))

        # check info match
        assert_array_equal(raw.ch_names, raw_c.ch_names)
        assert_allclose(raw.times, raw_c.times)
        assert_allclose(raw._cals, raw_c._cals)
        for key in ('version', 'usecs'):
            assert_equal(raw.info['meas_id'][key], raw_c.info['meas_id'][key])
        py_time = raw.info['meas_id']['secs']
        c_time = raw_c.info['meas_id']['secs']
        max_offset = 24 * 60 * 60  # probably overkill but covers timezone
        assert_true(c_time - max_offset <= py_time <= c_time)
        for t in ('dev_head_t', 'dev_ctf_t', 'ctf_head_t'):
            assert_allclose(raw.info[t]['trans'], raw_c.info[t]['trans'],
                            rtol=1e-4, atol=1e-7)
        for key in ('acq_pars', 'acq_stim', 'bads',
                    'ch_names', 'custom_ref_applied', 'description',
                    'events', 'experimenter', 'highpass', 'line_freq',
                    'lowpass', 'nchan', 'proj_id', 'proj_name',
                    'projs', 'sfreq', 'subject_info'):
            assert_equal(raw.info[key], raw_c.info[key], key)
        if op.basename(fname) not in single_trials:
            # We don't force buffer size to be smaller like MNE-C
            assert_equal(raw.info['buffer_size_sec'],
                         raw_c.info['buffer_size_sec'])
        assert_equal(len(raw.info['comps']), len(raw_c.info['comps']))
        for c1, c2 in zip(raw.info['comps'], raw_c.info['comps']):
            for key in ('colcals', 'rowcals'):
                assert_allclose(c1[key], c2[key])
            assert_equal(c1['save_calibrated'], c2['save_calibrated'])
            for key in ('row_names', 'col_names', 'nrow', 'ncol'):
                assert_array_equal(c1['data'][key], c2['data'][key])
            assert_allclose(c1['data']['data'], c2['data']['data'], atol=1e-7,
                            rtol=1e-5)
        assert_allclose(raw.info['hpi_results'][0]['coord_trans']['trans'],
                        raw_c.info['hpi_results'][0]['coord_trans']['trans'],
                        rtol=1e-5, atol=1e-7)
        assert_equal(len(raw.info['chs']), len(raw_c.info['chs']))
        for ii, (c1, c2) in enumerate(zip(raw.info['chs'], raw_c.info['chs'])):
            for key in ('kind', 'scanno', 'unit', 'ch_name', 'unit_mul',
                        'range', 'coord_frame', 'coil_type', 'logno'):
                if c1['ch_name'] == 'RMSP' and \
                        'catch-alp-good-f' in fname and \
                        key in ('kind', 'unit', 'coord_frame', 'coil_type',
                                'logno'):
                    continue  # XXX see below...
                assert_equal(c1[key], c2[key], err_msg=key)
            for key in ('cal',):
                assert_allclose(c1[key], c2[key], atol=1e-6, rtol=1e-4,
                                err_msg='raw.info["chs"][%d][%s]' % (ii, key))
            # XXX 2016/02/24: fixed bug with normal computation that used
            # to exist, once mne-C tools are updated we should update our FIF
            # conversion files, then the slices can go away (and the check
            # can be combined with that for "cal")
            for key in ('loc',):
                if c1['ch_name'] == 'RMSP' and 'catch-alp-good-f' in fname:
                    continue
                assert_allclose(c1[key][:3], c2[key][:3], atol=1e-6, rtol=1e-4,
                                err_msg='raw.info["chs"][%d][%s]' % (ii, key))
                assert_allclose(c1[key][9:12], c2[key][9:12], atol=1e-6,
                                rtol=1e-4,
                                err_msg='raw.info["chs"][%d][%s]' % (ii, key))
        if fname.endswith('catch-alp-good-f.ds'):  # omit points from .pos file
            raw.info['dig'] = raw.info['dig'][:-10]
        assert_dig_allclose(raw.info, raw_c.info)

        # check data match
        raw_c.save(out_fname, overwrite=True, buffer_size_sec=1.)
        raw_read = Raw(out_fname, add_eeg_ref=False)

        # so let's check tricky cases based on sample boundaries
        rng = np.random.RandomState(0)
        pick_ch = rng.permutation(np.arange(len(raw.ch_names)))[:10]
        bnd = int(round(raw.info['sfreq'] * raw.info['buffer_size_sec']))
        assert_equal(bnd, raw._raw_extras[0]['block_size'])
        assert_equal(bnd, block_sizes[op.basename(fname)])
        slices = (slice(0, bnd), slice(bnd - 1, bnd), slice(3, bnd),
                  slice(3, 300), slice(None))
        if len(raw.times) >= 2 * bnd:  # at least two complete blocks
            slices = slices + (slice(bnd, 2 * bnd), slice(bnd, bnd + 1),
                               slice(0, bnd + 100))
        for sl_time in slices:
            assert_allclose(raw[pick_ch, sl_time][0],
                            raw_c[pick_ch, sl_time][0])
            assert_allclose(raw_read[pick_ch, sl_time][0],
                            raw_c[pick_ch, sl_time][0])
        # all data / preload
        with warnings.catch_warnings(record=True) as w:  # reclassified ch
            raw = read_raw_ctf(fname, preload=True)
        assert_true(all('MISC channel' in str(ww.message) for ww in w))
        assert_allclose(raw[:][0], raw_c[:][0])
    assert_raises(TypeError, read_raw_ctf, 1)
    assert_raises(ValueError, read_raw_ctf, ctf_fname_continuous + 'foo.ds')
    # test ignoring of system clock
    read_raw_ctf(op.join(ctf_dir, ctf_fname_continuous), 'ignore')
    assert_raises(ValueError, read_raw_ctf,
                  op.join(ctf_dir, ctf_fname_continuous), 'foo')
Exemplo n.º 38
0
def raw_ctf():
    """Get ctf raw data from mne.io.tests.data."""
    raw_ctf = read_raw_ctf(fname_ctf_continuous, preload=True)
    return raw_ctf
Exemplo n.º 39
0
print('*** COMPUTE RAW COV ***')

#locale.setlocale(locale.LC_ALL, "en_US.utf8")
noise_fname_template = 'lyon_Noise*.ds'
for sbj in subject_ids:
    print('\nsbj %s \n' %sbj)
    ds_path = op.join(noise_path, sbj, '*misc', noise_fname_template)
    
    for noise_ds_fname in glob.glob(ds_path):
        print('*** Empty room data file %s found!!!\n' % noise_ds_fname)

    if not op.isdir(noise_ds_fname):
        raise RuntimeError('*** Empty room data file %s NOT found!!!'
                           % noise_ds_fname)
                           
    raw = read_raw_ctf(noise_ds_fname)
    
    noise_fname = sbj + '_' + noise_fname_template.replace('*.ds', '-raw.fif')
    noise_fif_fname = op.join(data_path, sbj,  noise_fname)
    print('*** Raw fif file name   %s ***\n' % noise_fif_fname)
    raw.save(noise_fif_fname, overwrite=True)
        
    noise_cov_fname = noise_fif_fname.replace('-raw.fif', '-raw-cov.fif')
    print('*** Noise Cov file name   %s ***\n' % noise_cov_fname)
    
    reject = create_reject_dict(raw.info)
    picks = pick_types(raw.info, meg=True, ref_meg=False, exclude='bads')

    noise_cov = compute_raw_covariance(raw, picks=picks, reject=reject)

    write_cov(noise_cov_fname, noise_cov)
Exemplo n.º 40
0
from mne.datasets import spm_face
from mne.preprocessing import ICA, create_eog_epochs
from mne import io, combine_evoked
from mne.minimum_norm import make_inverse_operator, apply_inverse

print(__doc__)

data_path = spm_face.data_path()
subjects_dir = data_path + '/subjects'

###############################################################################
# Load and filter data, set up epochs

raw_fname = data_path + '/MEG/spm/SPM_CTF_MEG_example_faces%d_3D.ds'

raw = io.read_raw_ctf(raw_fname % 1, preload=True)  # Take first run
# Here to save memory and time we'll downsample heavily -- this is not
# advised for real data as it can effectively jitter events!
raw.resample(120., npad='auto')

picks = mne.pick_types(raw.info, meg=True, exclude='bads')
raw.filter(1, 30, method='fir', fir_design='firwin')

events = mne.find_events(raw, stim_channel='UPPT001')

# plot the events to get an idea of the paradigm
mne.viz.plot_events(events, raw.info['sfreq'])

event_ids = {"faces": 1, "scrambled": 2}

tmin, tmax = -0.2, 0.6
Exemplo n.º 41
0
def test_read_ctf_annotations():
    """Test reading CTF marker file."""
    EXPECTED_LATENCIES = np.array([
        5640,
        7950,
        9990,
        12253,
        14171,
        16557,
        18896,
        20846,  # noqa
        22702,
        24990,
        26830,
        28974,
        30906,
        33077,
        34985,
        36907,  # noqa
        38922,
        40760,
        42881,
        45222,
        47457,
        49618,
        51802,
        54227,  # noqa
        56171,
        58274,
        60394,
        62375,
        64444,
        66767,
        68827,
        71109,  # noqa
        73499,
        75807,
        78146,
        80415,
        82554,
        84508,
        86403,
        88426,  # noqa
        90746,
        92893,
        94779,
        96822,
        98996,
        99001,
        100949,
        103325,  # noqa
        105322,
        107678,
        109667,
        111844,
        113682,
        115817,
        117691,
        119663,  # noqa
        121966,
        123831,
        126110,
        128490,
        130521,
        132808,
        135204,
        137210,  # noqa
        139130,
        141390,
        143660,
        145748,
        147889,
        150205,
        152528,
        154646,  # noqa
        156897,
        159191,
        161446,
        163722,
        166077,
        168467,
        170624,
        172519,  # noqa
        174719,
        176886,
        179062,
        181405,
        183709,
        186034,
        188454,
        190330,  # noqa
        192660,
        194682,
        196834,
        199161,
        201035,
        203008,
        204999,
        207409,  # noqa
        209661,
        211895,
        213957,
        216005,
        218040,
        220178,
        222137,
        224305,  # noqa
        226297,
        228654,
        230755,
        232909,
        235205,
        237373,
        239723,
        241762,  # noqa
        243748,
        245762,
        247801,
        250055,
        251886,
        254252,
        256441,
        258354,  # noqa
        260680,
        263026,
        265048,
        267073,
        269235,
        271556,
        273927,
        276197,  # noqa
        278436,
        280536,
        282691,
        284933,
        287061,
        288936,
        290941,
        293183,  # noqa
        295369,
        297729,
        299626,
        301546,
        303449,
        305548,
        307882,
        310124,  # noqa
        312374,
        314509,
        316815,
        318789,
        320981,
        322879,
        324878,
        326959,  # noqa
        329341,
        331200,
        331201,
        333469,
        335584,
        337984,
        340143,
        342034,  # noqa
        344360,
        346309,
        348544,
        350970,
        353052,
        355227,
        357449,
        359603,  # noqa
        361725,
        363676,
        365735,
        367799,
        369777,
        371904,
        373856,
        376204,  # noqa
        378391,
        380800,
        382859,
        385161,
        387093,
        389434,
        391624,
        393785,  # noqa
        396093,
        398214,
        400198,
        402166,
        404104,
        406047,
        408372,
        410686,  # noqa
        413029,
        414975,
        416850,
        418797,
        420824,
        422959,
        425026,
        427215,  # noqa
        429278,
        431668  # noqa
    ]) - 1  # Fieldtrip has 1 sample difference with MNE

    raw = RawArray(data=np.empty((1, 432000), dtype=np.float64),
                   info=create_info(ch_names=1, sfreq=1200.0))
    raw.set_meas_date(read_raw_ctf(somato_fname).info['meas_date'])
    raw.set_annotations(read_annotations(somato_fname))

    events, _ = events_from_annotations(raw)
    latencies = np.sort(events[:, 0])
    assert_allclose(latencies, EXPECTED_LATENCIES, atol=1e-6)
Exemplo n.º 42
0
def test_plot_alignment(tmpdir, backends_3d):
    """Test plotting of -trans.fif files and MEG sensor layouts."""
    from mne.viz.backends.renderer import _Renderer
    backend_name = get_3d_backend()
    # generate fiducials file for testing
    tempdir = str(tmpdir)
    fiducials_path = op.join(tempdir, 'fiducials.fif')
    fid = [{
        'coord_frame': 5,
        'ident': 1,
        'kind': 1,
        'r': [-0.08061612, -0.02908875, -0.04131077]
    }, {
        'coord_frame': 5,
        'ident': 2,
        'kind': 1,
        'r': [0.00146763, 0.08506715, -0.03483611]
    }, {
        'coord_frame': 5,
        'ident': 3,
        'kind': 1,
        'r': [0.08436285, -0.02850276, -0.04127743]
    }]
    write_dig(fiducials_path, fid, 5)

    if backend_name == 'mayavi':
        mlab = _import_mlab()
    evoked = read_evokeds(evoked_fname)[0]
    sample_src = read_source_spaces(src_fname)
    bti = read_raw_bti(pdf_fname,
                       config_fname,
                       hs_fname,
                       convert=True,
                       preload=False).info
    infos = dict(
        Neuromag=evoked.info,
        CTF=read_raw_ctf(ctf_fname).info,
        BTi=bti,
        KIT=read_raw_kit(sqd_fname).info,
    )
    for system, info in infos.items():
        meg = ['helmet', 'sensors']
        if system == 'KIT':
            meg.append('ref')
        fig = plot_alignment(info,
                             trans_fname,
                             subject='sample',
                             subjects_dir=subjects_dir,
                             meg=meg)
        renderer = _Renderer(fig=fig)
        renderer.close()
    # KIT ref sensor coil def is defined
    if backend_name == 'mayavi':
        mlab.close(all=True)
    info = infos['Neuromag']
    pytest.raises(TypeError,
                  plot_alignment,
                  'foo',
                  trans_fname,
                  subject='sample',
                  subjects_dir=subjects_dir)
    pytest.raises(OSError,
                  plot_alignment,
                  info,
                  trans_fname,
                  subject='sample',
                  subjects_dir=subjects_dir,
                  src='foo')
    pytest.raises(ValueError,
                  plot_alignment,
                  info,
                  trans_fname,
                  subject='fsaverage',
                  subjects_dir=subjects_dir,
                  src=sample_src)
    sample_src.plot(subjects_dir=subjects_dir,
                    head=True,
                    skull=True,
                    brain='white')
    if backend_name == 'mayavi':
        mlab.close(all=True)
    # no-head version
    if backend_name == 'mayavi':
        mlab.close(all=True)
    # all coord frames
    pytest.raises(ValueError, plot_alignment, info)
    plot_alignment(info, surfaces=[])
    for coord_frame in ('meg', 'head', 'mri'):
        fig = plot_alignment(info,
                             meg=['helmet', 'sensors'],
                             dig=True,
                             coord_frame=coord_frame,
                             trans=trans_fname,
                             subject='sample',
                             mri_fiducials=fiducials_path,
                             subjects_dir=subjects_dir,
                             src=src_fname)
        renderer = _Renderer(fig=fig)
        renderer.close()
    # EEG only with strange options
    evoked_eeg_ecog_seeg = evoked.copy().pick_types(meg=False, eeg=True)
    evoked_eeg_ecog_seeg.info['projs'] = []  # "remove" avg proj
    evoked_eeg_ecog_seeg.set_channel_types({
        'EEG 001': 'ecog',
        'EEG 002': 'seeg'
    })
    with pytest.warns(RuntimeWarning, match='Cannot plot MEG'):
        plot_alignment(evoked_eeg_ecog_seeg.info,
                       subject='sample',
                       trans=trans_fname,
                       subjects_dir=subjects_dir,
                       surfaces=['white', 'outer_skin', 'outer_skull'],
                       meg=['helmet', 'sensors'],
                       eeg=['original', 'projected'],
                       ecog=True,
                       seeg=True)
    if backend_name == 'mayavi':
        mlab.close(all=True)

    sphere = make_sphere_model(info=evoked.info, r0='auto', head_radius='auto')
    bem_sol = read_bem_solution(
        op.join(subjects_dir, 'sample', 'bem',
                'sample-1280-1280-1280-bem-sol.fif'))
    bem_surfs = read_bem_surfaces(
        op.join(subjects_dir, 'sample', 'bem',
                'sample-1280-1280-1280-bem.fif'))
    sample_src[0]['coord_frame'] = 4  # hack for coverage
    plot_alignment(
        info,
        subject='sample',
        eeg='projected',
        meg='helmet',
        bem=sphere,
        dig=True,
        surfaces=['brain', 'inner_skull', 'outer_skull', 'outer_skin'])
    plot_alignment(info,
                   trans_fname,
                   subject='sample',
                   meg='helmet',
                   subjects_dir=subjects_dir,
                   eeg='projected',
                   bem=sphere,
                   surfaces=['head', 'brain'],
                   src=sample_src)
    assert all(surf['coord_frame'] == FIFF.FIFFV_COORD_MRI
               for surf in bem_sol['surfs'])
    plot_alignment(info,
                   trans_fname,
                   subject='sample',
                   meg=[],
                   subjects_dir=subjects_dir,
                   bem=bem_sol,
                   eeg=True,
                   surfaces=['head', 'inflated', 'outer_skull', 'inner_skull'])
    assert all(surf['coord_frame'] == FIFF.FIFFV_COORD_MRI
               for surf in bem_sol['surfs'])
    plot_alignment(info,
                   trans_fname,
                   subject='sample',
                   meg=True,
                   subjects_dir=subjects_dir,
                   surfaces=['head', 'inner_skull'],
                   bem=bem_surfs)
    sphere = make_sphere_model('auto', 'auto', evoked.info)
    src = setup_volume_source_space(sphere=sphere)
    plot_alignment(
        info,
        eeg='projected',
        meg='helmet',
        bem=sphere,
        src=src,
        dig=True,
        surfaces=['brain', 'inner_skull', 'outer_skull', 'outer_skin'])
    sphere = make_sphere_model('auto', None, evoked.info)  # one layer
    # no info is permitted
    fig = plot_alignment(trans=trans_fname,
                         subject='sample',
                         meg=False,
                         coord_frame='mri',
                         subjects_dir=subjects_dir,
                         surfaces=['brain'],
                         bem=sphere,
                         show_axes=True)
    if backend_name == 'mayavi':
        import mayavi  # noqa: F401 analysis:ignore
        assert isinstance(fig, mayavi.core.scene.Scene)

    # 3D coil with no defined draw (ConvexHull)
    info_cube = pick_info(info, [0])
    info['dig'] = None
    info_cube['chs'][0]['coil_type'] = 9999
    with pytest.raises(RuntimeError, match='coil definition not found'):
        plot_alignment(info_cube, meg='sensors', surfaces=())
    coil_def_fname = op.join(tempdir, 'temp')
    with open(coil_def_fname, 'w') as fid:
        fid.write(coil_3d)
    with use_coil_def(coil_def_fname):
        plot_alignment(info_cube, meg='sensors', surfaces=(), dig=True)

    # one layer bem with skull surfaces:
    pytest.raises(ValueError,
                  plot_alignment,
                  info=info,
                  trans=trans_fname,
                  subject='sample',
                  subjects_dir=subjects_dir,
                  surfaces=['brain', 'head', 'inner_skull'],
                  bem=sphere)
    # wrong eeg value:
    pytest.raises(ValueError,
                  plot_alignment,
                  info=info,
                  trans=trans_fname,
                  subject='sample',
                  subjects_dir=subjects_dir,
                  eeg='foo')
    # wrong meg value:
    pytest.raises(ValueError,
                  plot_alignment,
                  info=info,
                  trans=trans_fname,
                  subject='sample',
                  subjects_dir=subjects_dir,
                  meg='bar')
    # multiple brain surfaces:
    pytest.raises(ValueError,
                  plot_alignment,
                  info=info,
                  trans=trans_fname,
                  subject='sample',
                  subjects_dir=subjects_dir,
                  surfaces=['white', 'pial'])
    pytest.raises(TypeError,
                  plot_alignment,
                  info=info,
                  trans=trans_fname,
                  subject='sample',
                  subjects_dir=subjects_dir,
                  surfaces=[1])
    pytest.raises(ValueError,
                  plot_alignment,
                  info=info,
                  trans=trans_fname,
                  subject='sample',
                  subjects_dir=subjects_dir,
                  surfaces=['foo'])
    if backend_name == 'mayavi':
        mlab.close(all=True)
Exemplo n.º 43
0
from mne.datasets.brainstorm import bst_phantom_ctf
from mne.io import read_raw_ctf

print(__doc__)

###############################################################################
# The data were collected with a CTF system at 2400 Hz.
data_path = bst_phantom_ctf.data_path()

# Switch to these to use the higher-SNR data:
# raw_path = op.join(data_path, 'phantom_200uA_20150709_01.ds')
# dip_freq = 7.
raw_path = op.join(data_path, 'phantom_20uA_20150603_03.ds')
dip_freq = 23.
erm_path = op.join(data_path, 'emptyroom_20150709_01.ds')
raw = read_raw_ctf(raw_path, preload=True)

###############################################################################
# The sinusoidal signal is generated on channel HDAC006, so we can use
# that to obtain precise timing.

sinusoid, times = raw[raw.ch_names.index('HDAC006-4408')]
plt.figure()
plt.plot(times[times < 1.], sinusoid.T[times < 1.])

###############################################################################
# Let's create some events using this signal by thresholding the sinusoid.

events = np.where(np.diff(sinusoid > 0.5) > 0)[1] + raw.first_samp
events = np.vstack((events, np.zeros_like(events), np.ones_like(events))).T
Exemplo n.º 44
0
def test_read_ctf():
    """Test CTF reader"""
    temp_dir = _TempDir()
    out_fname = op.join(temp_dir, 'test_py_raw.fif')

    # Create a dummy .eeg file so we can test our reading/application of it
    os.mkdir(op.join(temp_dir, 'randpos'))
    ctf_eeg_fname = op.join(temp_dir, 'randpos', ctf_fname_catch)
    shutil.copytree(op.join(ctf_dir, ctf_fname_catch), ctf_eeg_fname)
    with warnings.catch_warnings(record=True) as w:  # reclassified ch
        raw = _test_raw_reader(read_raw_ctf, directory=ctf_eeg_fname)
    assert_true(all('MISC channel' in str(ww.message) for ww in w))
    picks = pick_types(raw.info, meg=False, eeg=True)
    pos = np.random.RandomState(42).randn(len(picks), 3)
    fake_eeg_fname = op.join(ctf_eeg_fname, 'catch-alp-good-f.eeg')
    # Create a bad file
    with open(fake_eeg_fname, 'wb') as fid:
        fid.write('foo\n'.encode('ascii'))
    assert_raises(RuntimeError, read_raw_ctf, ctf_eeg_fname)
    # Create a good file
    with open(fake_eeg_fname, 'wb') as fid:
        for ii, ch_num in enumerate(picks):
            args = (
                str(ch_num + 1),
                raw.ch_names[ch_num],
            ) + tuple('%0.5f' % x for x in 100 * pos[ii])  # convert to cm
            fid.write(('\t'.join(args) + '\n').encode('ascii'))
    pos_read_old = np.array([raw.info['chs'][p]['loc'][:3] for p in picks])
    with warnings.catch_warnings(record=True) as w:  # reclassified channel
        raw = read_raw_ctf(ctf_eeg_fname)  # read modified data
    assert_true(all('MISC channel' in str(ww.message) for ww in w))
    pos_read = np.array([raw.info['chs'][p]['loc'][:3] for p in picks])
    assert_allclose(apply_trans(raw.info['ctf_head_t'], pos),
                    pos_read,
                    rtol=1e-5,
                    atol=1e-5)
    assert_true((pos_read == pos_read_old).mean() < 0.1)
    shutil.copy(op.join(ctf_dir, 'catch-alp-good-f.ds_randpos_raw.fif'),
                op.join(temp_dir, 'randpos', 'catch-alp-good-f.ds_raw.fif'))

    # Create a version with no hc, starting out *with* EEG pos (error)
    os.mkdir(op.join(temp_dir, 'nohc'))
    ctf_no_hc_fname = op.join(temp_dir, 'no_hc', ctf_fname_catch)
    shutil.copytree(ctf_eeg_fname, ctf_no_hc_fname)
    remove_base = op.join(ctf_no_hc_fname, op.basename(ctf_fname_catch[:-3]))
    os.remove(remove_base + '.hc')
    with warnings.catch_warnings(record=True):  # no coord tr
        assert_raises(RuntimeError, read_raw_ctf, ctf_no_hc_fname)
    os.remove(remove_base + '.eeg')
    shutil.copy(op.join(ctf_dir, 'catch-alp-good-f.ds_nohc_raw.fif'),
                op.join(temp_dir, 'no_hc', 'catch-alp-good-f.ds_raw.fif'))

    # All our files
    use_fnames = [op.join(ctf_dir, c) for c in ctf_fnames]
    for fname in use_fnames:
        raw_c = Raw(fname + '_raw.fif', add_eeg_ref=False, preload=True)
        with warnings.catch_warnings(record=True) as w:  # reclassified ch
            raw = read_raw_ctf(fname)
        assert_true(all('MISC channel' in str(ww.message) for ww in w))

        # check info match
        assert_array_equal(raw.ch_names, raw_c.ch_names)
        assert_allclose(raw.times, raw_c.times)
        assert_allclose(raw._cals, raw_c._cals)
        for key in ('version', 'usecs'):
            assert_equal(raw.info['meas_id'][key], raw_c.info['meas_id'][key])
        py_time = raw.info['meas_id']['secs']
        c_time = raw_c.info['meas_id']['secs']
        max_offset = 24 * 60 * 60  # probably overkill but covers timezone
        assert_true(c_time - max_offset <= py_time <= c_time)
        for t in ('dev_head_t', 'dev_ctf_t', 'ctf_head_t'):
            assert_allclose(raw.info[t]['trans'],
                            raw_c.info[t]['trans'],
                            rtol=1e-4,
                            atol=1e-7)
        for key in ('acq_pars', 'acq_stim', 'bads', 'ch_names',
                    'custom_ref_applied', 'description', 'events',
                    'experimenter', 'highpass', 'line_freq', 'lowpass',
                    'nchan', 'proj_id', 'proj_name', 'projs', 'sfreq',
                    'subject_info'):
            assert_equal(raw.info[key], raw_c.info[key], key)
        if op.basename(fname) not in single_trials:
            # We don't force buffer size to be smaller like MNE-C
            assert_equal(raw.info['buffer_size_sec'],
                         raw_c.info['buffer_size_sec'])
        assert_equal(len(raw.info['comps']), len(raw_c.info['comps']))
        for c1, c2 in zip(raw.info['comps'], raw_c.info['comps']):
            for key in ('colcals', 'rowcals'):
                assert_allclose(c1[key], c2[key])
            assert_equal(c1['save_calibrated'], c2['save_calibrated'])
            for key in ('row_names', 'col_names', 'nrow', 'ncol'):
                assert_array_equal(c1['data'][key], c2['data'][key])
            assert_allclose(c1['data']['data'],
                            c2['data']['data'],
                            atol=1e-7,
                            rtol=1e-5)
        assert_allclose(raw.info['hpi_results'][0]['coord_trans']['trans'],
                        raw_c.info['hpi_results'][0]['coord_trans']['trans'],
                        rtol=1e-5,
                        atol=1e-7)
        assert_equal(len(raw.info['chs']), len(raw_c.info['chs']))
        for ii, (c1, c2) in enumerate(zip(raw.info['chs'], raw_c.info['chs'])):
            for key in ('kind', 'scanno', 'unit', 'ch_name', 'unit_mul',
                        'range', 'coord_frame', 'coil_type', 'logno'):
                if c1['ch_name'] == 'RMSP' and \
                        'catch-alp-good-f' in fname and \
                        key in ('kind', 'unit', 'coord_frame', 'coil_type',
                                'logno'):
                    continue  # XXX see below...
                assert_equal(c1[key], c2[key], err_msg=key)
            for key in ('cal', ):
                assert_allclose(c1[key],
                                c2[key],
                                atol=1e-6,
                                rtol=1e-4,
                                err_msg='raw.info["chs"][%d][%s]' % (ii, key))
            # XXX 2016/02/24: fixed bug with normal computation that used
            # to exist, once mne-C tools are updated we should update our FIF
            # conversion files, then the slices can go away (and the check
            # can be combined with that for "cal")
            for key in ('loc', ):
                if c1['ch_name'] == 'RMSP' and 'catch-alp-good-f' in fname:
                    continue
                assert_allclose(c1[key][:3],
                                c2[key][:3],
                                atol=1e-6,
                                rtol=1e-4,
                                err_msg='raw.info["chs"][%d][%s]' % (ii, key))
                assert_allclose(c1[key][9:12],
                                c2[key][9:12],
                                atol=1e-6,
                                rtol=1e-4,
                                err_msg='raw.info["chs"][%d][%s]' % (ii, key))
        if fname.endswith('catch-alp-good-f.ds'):  # omit points from .pos file
            raw.info['dig'] = raw.info['dig'][:-10]
        assert_dig_allclose(raw.info, raw_c.info)

        # check data match
        raw_c.save(out_fname, overwrite=True, buffer_size_sec=1.)
        raw_read = Raw(out_fname, add_eeg_ref=False)

        # so let's check tricky cases based on sample boundaries
        rng = np.random.RandomState(0)
        pick_ch = rng.permutation(np.arange(len(raw.ch_names)))[:10]
        bnd = int(round(raw.info['sfreq'] * raw.info['buffer_size_sec']))
        assert_equal(bnd, raw._raw_extras[0]['block_size'])
        assert_equal(bnd, block_sizes[op.basename(fname)])
        slices = (slice(0, bnd), slice(bnd - 1, bnd), slice(3, bnd),
                  slice(3, 300), slice(None))
        if len(raw.times) >= 2 * bnd:  # at least two complete blocks
            slices = slices + (slice(bnd, 2 * bnd), slice(
                bnd, bnd + 1), slice(0, bnd + 100))
        for sl_time in slices:
            assert_allclose(raw[pick_ch, sl_time][0], raw_c[pick_ch,
                                                            sl_time][0])
            assert_allclose(raw_read[pick_ch, sl_time][0], raw_c[pick_ch,
                                                                 sl_time][0])
        # all data / preload
        with warnings.catch_warnings(record=True) as w:  # reclassified ch
            raw = read_raw_ctf(fname, preload=True)
        assert_true(all('MISC channel' in str(ww.message) for ww in w))
        assert_allclose(raw[:][0], raw_c[:][0])
    raw.plot(show=False)  # Test plotting with ref_meg channels.
    assert_raises(TypeError, read_raw_ctf, 1)
    assert_raises(ValueError, read_raw_ctf, ctf_fname_continuous + 'foo.ds')
    # test ignoring of system clock
    read_raw_ctf(op.join(ctf_dir, ctf_fname_continuous), 'ignore')
    assert_raises(ValueError, read_raw_ctf,
                  op.join(ctf_dir, ctf_fname_continuous), 'foo')
Exemplo n.º 45
0
# License: BSD-3-Clause

# %%

import os.path as op
import matplotlib.pyplot as plt
import numpy as np
from mne.datasets.brainstorm import bst_auditory
from mne.io import read_raw_ctf
from mne.preprocessing import annotate_muscle_zscore

# Load data
data_path = bst_auditory.data_path()
raw_fname = op.join(data_path, 'MEG', 'bst_auditory', 'S01_AEF_20131218_01.ds')

raw = read_raw_ctf(raw_fname, preload=False)

raw.crop(130, 160).load_data()  # just use a fraction of data for speed here
raw.resample(300, npad="auto")

# %%
# Notch filter the data:
#
# .. note::
#     If line noise is present, you should perform notch-filtering *before*
#     detecting muscle artifacts. See :ref:`tut-section-line-noise` for an
#     example.

raw.notch_filter([50, 100])

# %%
Exemplo n.º 46
0
def test_plot_alignment():
    """Test plotting of -trans.fif files and MEG sensor layouts."""
    # generate fiducials file for testing
    tempdir = _TempDir()
    fiducials_path = op.join(tempdir, 'fiducials.fif')
    fid = [{
        'coord_frame': 5,
        'ident': 1,
        'kind': 1,
        'r': [-0.08061612, -0.02908875, -0.04131077]
    }, {
        'coord_frame': 5,
        'ident': 2,
        'kind': 1,
        'r': [0.00146763, 0.08506715, -0.03483611]
    }, {
        'coord_frame': 5,
        'ident': 3,
        'kind': 1,
        'r': [0.08436285, -0.02850276, -0.04127743]
    }]
    write_dig(fiducials_path, fid, 5)

    mlab = _import_mlab()
    evoked = read_evokeds(evoked_fname)[0]
    sample_src = read_source_spaces(src_fname)
    with warnings.catch_warnings(record=True):  # 4D weight tables
        bti = read_raw_bti(pdf_fname,
                           config_fname,
                           hs_fname,
                           convert=True,
                           preload=False).info
    infos = dict(
        Neuromag=evoked.info,
        CTF=read_raw_ctf(ctf_fname).info,
        BTi=bti,
        KIT=read_raw_kit(sqd_fname).info,
    )
    for system, info in infos.items():
        meg = ['helmet', 'sensors']
        if system == 'KIT':
            meg.append('ref')
        plot_alignment(info,
                       trans_fname,
                       subject='sample',
                       subjects_dir=subjects_dir,
                       meg=meg)
        mlab.close(all=True)
    # KIT ref sensor coil def is defined
    plot_trans(infos['KIT'], None, meg_sensors=True, ref_meg=True)
    mlab.close(all=True)
    info = infos['Neuromag']
    assert_raises(TypeError,
                  plot_alignment,
                  'foo',
                  trans_fname,
                  subject='sample',
                  subjects_dir=subjects_dir)
    assert_raises(TypeError,
                  plot_alignment,
                  info,
                  trans_fname,
                  subject='sample',
                  subjects_dir=subjects_dir,
                  src='foo')
    assert_raises(ValueError,
                  plot_alignment,
                  info,
                  trans_fname,
                  subject='fsaverage',
                  subjects_dir=subjects_dir,
                  src=sample_src)
    sample_src.plot(subjects_dir=subjects_dir,
                    head=True,
                    skull=True,
                    brain='white')
    mlab.close(all=True)
    # no-head version
    plot_trans(info, None, meg_sensors=True, dig=True, coord_frame='head')
    mlab.close(all=True)
    # all coord frames
    for coord_frame in ('meg', 'head', 'mri'):
        plot_alignment(info,
                       meg=['helmet', 'sensors'],
                       dig=True,
                       coord_frame=coord_frame,
                       trans=trans_fname,
                       subject='sample',
                       mri_fiducials=fiducials_path,
                       subjects_dir=subjects_dir,
                       src=sample_src)
        mlab.close(all=True)
    # EEG only with strange options
    evoked_eeg_ecog = evoked.copy().pick_types(meg=False, eeg=True)
    evoked_eeg_ecog.info['projs'] = []  # "remove" avg proj
    evoked_eeg_ecog.set_channel_types({'EEG 001': 'ecog'})
    with warnings.catch_warnings(record=True) as w:
        plot_alignment(evoked_eeg_ecog.info,
                       subject='sample',
                       trans=trans_fname,
                       subjects_dir=subjects_dir,
                       surfaces=['white', 'outer_skin', 'outer_skull'],
                       meg=['helmet', 'sensors'],
                       eeg=['original', 'projected'],
                       ecog=True)
    mlab.close(all=True)
    assert_true(['Cannot plot MEG' in str(ww.message) for ww in w])

    sphere = make_sphere_model(info=evoked.info, r0='auto', head_radius='auto')
    bem_sol = read_bem_solution(
        op.join(subjects_dir, 'sample', 'bem',
                'sample-1280-1280-1280-bem-sol.fif'))
    bem_surfs = read_bem_surfaces(
        op.join(subjects_dir, 'sample', 'bem',
                'sample-1280-1280-1280-bem.fif'))
    sample_src[0]['coord_frame'] = 4  # hack for coverage
    plot_alignment(info,
                   trans_fname,
                   subject='sample',
                   meg='helmet',
                   subjects_dir=subjects_dir,
                   eeg='projected',
                   bem=sphere,
                   surfaces=['head', 'brain', 'inner_skull', 'outer_skull'],
                   src=sample_src)
    plot_alignment(info,
                   trans_fname,
                   subject='sample',
                   meg=[],
                   subjects_dir=subjects_dir,
                   bem=bem_sol,
                   eeg=True,
                   surfaces=['head', 'inflated', 'outer_skull', 'inner_skull'])
    plot_alignment(info,
                   trans_fname,
                   subject='sample',
                   meg=True,
                   subjects_dir=subjects_dir,
                   surfaces=['head', 'inner_skull'],
                   bem=bem_surfs)
    sphere = make_sphere_model('auto', None, evoked.info)  # one layer
    plot_alignment(info,
                   trans_fname,
                   subject='sample',
                   meg=False,
                   coord_frame='mri',
                   subjects_dir=subjects_dir,
                   surfaces=['brain'],
                   bem=sphere)
    # one layer bem with skull surfaces:
    assert_raises(ValueError,
                  plot_alignment,
                  info=info,
                  trans=trans_fname,
                  subject='sample',
                  subjects_dir=subjects_dir,
                  surfaces=['brain', 'head', 'inner_skull'],
                  bem=sphere)
    # wrong eeg value:
    assert_raises(ValueError,
                  plot_alignment,
                  info=info,
                  trans=trans_fname,
                  subject='sample',
                  subjects_dir=subjects_dir,
                  eeg='foo')
    # wrong meg value:
    assert_raises(ValueError,
                  plot_alignment,
                  info=info,
                  trans=trans_fname,
                  subject='sample',
                  subjects_dir=subjects_dir,
                  meg='bar')
    # multiple brain surfaces:
    assert_raises(ValueError,
                  plot_alignment,
                  info=info,
                  trans=trans_fname,
                  subject='sample',
                  subjects_dir=subjects_dir,
                  surfaces=['white', 'pial'])
from mne import io
from mne.datasets import spm_face
from mne.minimum_norm import apply_inverse, make_inverse_operator
from mne.cov import compute_covariance

print(__doc__)

##############################################################################
# Get data

data_path = spm_face.data_path()
subjects_dir = data_path + '/subjects'

raw_fname = data_path + '/MEG/spm/SPM_CTF_MEG_example_faces%d_3D.ds'

raw = io.read_raw_ctf(raw_fname % 1)  # Take first run
# To save time and memory for this demo, we'll just use the first
# 2.5 minutes (all we need to get 30 total events) and heavily
# resample 480->60 Hz (usually you wouldn't do either of these!)
raw = raw.crop(0, 150.).load_data()

picks = mne.pick_types(raw.info, meg=True, exclude='bads')
raw.filter(1, 20., n_jobs=1, fir_design='firwin')

events = mne.find_events(raw, stim_channel='UPPT001')

event_ids = {"faces": 1, "scrambled": 2}
tmin, tmax = -0.2, 0.5
baseline = None  # no baseline as high-pass is applied
reject = dict(mag=3e-12)
Exemplo n.º 48
0
def test_read_ctf(tmpdir):
    """Test CTF reader."""
    temp_dir = str(tmpdir)
    out_fname = op.join(temp_dir, 'test_py_raw.fif')

    # Create a dummy .eeg file so we can test our reading/application of it
    os.mkdir(op.join(temp_dir, 'randpos'))
    ctf_eeg_fname = op.join(temp_dir, 'randpos', ctf_fname_catch)
    shutil.copytree(op.join(ctf_dir, ctf_fname_catch), ctf_eeg_fname)
    with pytest.warns(RuntimeWarning, match='RMSP .* changed to a MISC ch'):
        raw = _test_raw_reader(read_raw_ctf, directory=ctf_eeg_fname)
    picks = pick_types(raw.info, meg=False, eeg=True)
    pos = np.random.RandomState(42).randn(len(picks), 3)
    fake_eeg_fname = op.join(ctf_eeg_fname, 'catch-alp-good-f.eeg')
    # Create a bad file
    with open(fake_eeg_fname, 'wb') as fid:
        fid.write('foo\n'.encode('ascii'))
    pytest.raises(RuntimeError, read_raw_ctf, ctf_eeg_fname)
    # Create a good file
    with open(fake_eeg_fname, 'wb') as fid:
        for ii, ch_num in enumerate(picks):
            args = (str(ch_num + 1), raw.ch_names[ch_num],) + tuple(
                '%0.5f' % x for x in 100 * pos[ii])  # convert to cm
            fid.write(('\t'.join(args) + '\n').encode('ascii'))
    pos_read_old = np.array([raw.info['chs'][p]['loc'][:3] for p in picks])
    with pytest.warns(RuntimeWarning, match='RMSP .* changed to a MISC ch'):
        raw = read_raw_ctf(ctf_eeg_fname)  # read modified data
    pos_read = np.array([raw.info['chs'][p]['loc'][:3] for p in picks])
    assert_allclose(apply_trans(raw.info['ctf_head_t'], pos), pos_read,
                    rtol=1e-5, atol=1e-5)
    assert (pos_read == pos_read_old).mean() < 0.1
    shutil.copy(op.join(ctf_dir, 'catch-alp-good-f.ds_randpos_raw.fif'),
                op.join(temp_dir, 'randpos', 'catch-alp-good-f.ds_raw.fif'))

    # Create a version with no hc, starting out *with* EEG pos (error)
    os.mkdir(op.join(temp_dir, 'nohc'))
    ctf_no_hc_fname = op.join(temp_dir, 'no_hc', ctf_fname_catch)
    shutil.copytree(ctf_eeg_fname, ctf_no_hc_fname)
    remove_base = op.join(ctf_no_hc_fname, op.basename(ctf_fname_catch[:-3]))
    os.remove(remove_base + '.hc')
    with pytest.warns(RuntimeWarning, match='MISC channel'):
        pytest.raises(RuntimeError, read_raw_ctf, ctf_no_hc_fname)
    os.remove(remove_base + '.eeg')
    shutil.copy(op.join(ctf_dir, 'catch-alp-good-f.ds_nohc_raw.fif'),
                op.join(temp_dir, 'no_hc', 'catch-alp-good-f.ds_raw.fif'))

    # All our files
    use_fnames = [op.join(ctf_dir, c) for c in ctf_fnames]
    for fname in use_fnames:
        raw_c = read_raw_fif(fname + '_raw.fif', preload=True)
        with pytest.warns(None):  # sometimes matches "MISC channel"
            raw = read_raw_ctf(fname)

        # check info match
        assert_array_equal(raw.ch_names, raw_c.ch_names)
        assert_allclose(raw.times, raw_c.times)
        assert_allclose(raw._cals, raw_c._cals)
        assert (raw.info['meas_id']['version'] ==
                raw_c.info['meas_id']['version'] + 1)
        for t in ('dev_head_t', 'dev_ctf_t', 'ctf_head_t'):
            assert_allclose(raw.info[t]['trans'], raw_c.info[t]['trans'],
                            rtol=1e-4, atol=1e-7)
        # XXX 2019/11/29 : MNC-C FIF conversion files don't have meas_date set.
        # Consider adding meas_date to below checks once this is addressed in
        # MNE-C
        for key in ('acq_pars', 'acq_stim', 'bads',
                    'ch_names', 'custom_ref_applied', 'description',
                    'events', 'experimenter', 'highpass', 'line_freq',
                    'lowpass', 'nchan', 'proj_id', 'proj_name',
                    'projs', 'sfreq', 'subject_info'):
            assert raw.info[key] == raw_c.info[key], key
        if op.basename(fname) not in single_trials:
            # We don't force buffer size to be smaller like MNE-C
            assert raw.buffer_size_sec == raw_c.buffer_size_sec
        assert len(raw.info['comps']) == len(raw_c.info['comps'])
        for c1, c2 in zip(raw.info['comps'], raw_c.info['comps']):
            for key in ('colcals', 'rowcals'):
                assert_allclose(c1[key], c2[key])
            assert c1['save_calibrated'] == c2['save_calibrated']
            for key in ('row_names', 'col_names', 'nrow', 'ncol'):
                assert_array_equal(c1['data'][key], c2['data'][key])
            assert_allclose(c1['data']['data'], c2['data']['data'], atol=1e-7,
                            rtol=1e-5)
        assert_allclose(raw.info['hpi_results'][0]['coord_trans']['trans'],
                        raw_c.info['hpi_results'][0]['coord_trans']['trans'],
                        rtol=1e-5, atol=1e-7)
        assert len(raw.info['chs']) == len(raw_c.info['chs'])
        for ii, (c1, c2) in enumerate(zip(raw.info['chs'], raw_c.info['chs'])):
            for key in ('kind', 'scanno', 'unit', 'ch_name', 'unit_mul',
                        'range', 'coord_frame', 'coil_type', 'logno'):
                if c1['ch_name'] == 'RMSP' and \
                        'catch-alp-good-f' in fname and \
                        key in ('kind', 'unit', 'coord_frame', 'coil_type',
                                'logno'):
                    continue  # XXX see below...
                if key == 'coil_type' and c1[key] == FIFF.FIFFV_COIL_EEG:
                    # XXX MNE-C bug that this is not set
                    assert c2[key] == FIFF.FIFFV_COIL_NONE
                    continue
                assert c1[key] == c2[key], key
            for key in ('cal',):
                assert_allclose(c1[key], c2[key], atol=1e-6, rtol=1e-4,
                                err_msg='raw.info["chs"][%d][%s]' % (ii, key))
            # XXX 2016/02/24: fixed bug with normal computation that used
            # to exist, once mne-C tools are updated we should update our FIF
            # conversion files, then the slices can go away (and the check
            # can be combined with that for "cal")
            for key in ('loc',):
                if c1['ch_name'] == 'RMSP' and 'catch-alp-good-f' in fname:
                    continue
                if (c2[key][:3] == 0.).all():
                    check = [np.nan] * 3
                else:
                    check = c2[key][:3]
                assert_allclose(c1[key][:3], check, atol=1e-6, rtol=1e-4,
                                err_msg='raw.info["chs"][%d][%s]' % (ii, key))
                if (c2[key][3:] == 0.).all():
                    check = [np.nan] * 3
                else:
                    check = c2[key][9:12]
                assert_allclose(c1[key][9:12], check, atol=1e-6, rtol=1e-4,
                                err_msg='raw.info["chs"][%d][%s]' % (ii, key))

        # Make sure all digitization points are in the MNE head coord frame
        for p in raw.info['dig']:
            assert p['coord_frame'] == FIFF.FIFFV_COORD_HEAD, \
                'dig points must be in FIFF.FIFFV_COORD_HEAD'

        if fname.endswith('catch-alp-good-f.ds'):  # omit points from .pos file
            raw.info['dig'] = raw.info['dig'][:-10]

        # XXX: Next test would fail because c-tools assign the fiducials from
        # CTF data as HPI. Should eventually clarify/unify with Matti.
        # assert_dig_allclose(raw.info, raw_c.info)

        # check data match
        raw_c.save(out_fname, overwrite=True, buffer_size_sec=1.)
        raw_read = read_raw_fif(out_fname)

        # so let's check tricky cases based on sample boundaries
        rng = np.random.RandomState(0)
        pick_ch = rng.permutation(np.arange(len(raw.ch_names)))[:10]
        bnd = int(round(raw.info['sfreq'] * raw.buffer_size_sec))
        assert bnd == raw._raw_extras[0]['block_size']
        assert bnd == block_sizes[op.basename(fname)]
        slices = (slice(0, bnd), slice(bnd - 1, bnd), slice(3, bnd),
                  slice(3, 300), slice(None))
        if len(raw.times) >= 2 * bnd:  # at least two complete blocks
            slices = slices + (slice(bnd, 2 * bnd), slice(bnd, bnd + 1),
                               slice(0, bnd + 100))
        for sl_time in slices:
            assert_allclose(raw[pick_ch, sl_time][0],
                            raw_c[pick_ch, sl_time][0])
            assert_allclose(raw_read[pick_ch, sl_time][0],
                            raw_c[pick_ch, sl_time][0])
        # all data / preload
        raw.load_data()
        assert_allclose(raw[:][0], raw_c[:][0], atol=1e-15)
        # test bad segment annotations
        if 'testdata_ctf_short.ds' in fname:
            assert 'bad' in raw.annotations.description[0]
            assert_allclose(raw.annotations.onset, [2.15])
            assert_allclose(raw.annotations.duration, [0.0225])

    pytest.raises(TypeError, read_raw_ctf, 1)
    pytest.raises(ValueError, read_raw_ctf, ctf_fname_continuous + 'foo.ds')
    # test ignoring of system clock
    read_raw_ctf(op.join(ctf_dir, ctf_fname_continuous), 'ignore')
    pytest.raises(ValueError, read_raw_ctf,
                  op.join(ctf_dir, ctf_fname_continuous), 'foo')
Exemplo n.º 49
0
def test_compute_proj_ctf():
    """Test to show that projector code completes on CTF data."""
    raw = read_raw_ctf(ctf_fname, preload=True)

    # expected channels per projector type
    mag_picks = pick_types(raw.info, meg='mag', ref_meg=False,
                           exclude='bads')[::10]
    n_mags = len(mag_picks)
    grad_picks = pick_types(raw.info,
                            meg='grad',
                            ref_meg=False,
                            exclude='bads')[::10]
    n_grads = len(grad_picks)
    eeg_picks = pick_types(raw.info,
                           meg=False,
                           eeg=True,
                           ref_meg=False,
                           exclude='bads')[2::3]
    n_eegs = len(eeg_picks)
    ref_picks = pick_types(raw.info, meg=False, ref_meg=True)
    raw.pick(
        np.sort(np.concatenate([mag_picks, grad_picks, eeg_picks, ref_picks])))
    del mag_picks, grad_picks, eeg_picks, ref_picks

    # Test with and without gradient compensation
    raw.apply_gradient_compensation(0)
    n_projs_init = len(raw.info['projs'])
    with pytest.warns(RuntimeWarning, match='Attenuation'):
        projs, _ = compute_proj_eog(raw,
                                    n_mag=2,
                                    n_grad=2,
                                    n_eeg=2,
                                    average=True,
                                    ch_name='EEG059',
                                    avg_ref=True,
                                    no_proj=False,
                                    l_freq=None,
                                    h_freq=None,
                                    reject=None,
                                    tmax=dur_use,
                                    filter_length=1000)
    _check_projs_for_expected_channels(projs, n_mags, n_grads, n_eegs)
    assert len(projs) == (5 + n_projs_init)

    raw.apply_gradient_compensation(1)
    with pytest.warns(RuntimeWarning, match='Attenuation'):
        projs, _ = compute_proj_ecg(raw,
                                    n_mag=1,
                                    n_grad=1,
                                    n_eeg=2,
                                    average=True,
                                    ch_name='EEG059',
                                    avg_ref=True,
                                    no_proj=False,
                                    l_freq=None,
                                    h_freq=None,
                                    reject=None,
                                    tmax=dur_use,
                                    filter_length=1000)
    _check_projs_for_expected_channels(projs, n_mags, n_grads, n_eegs)
    assert len(projs) == (4 + n_projs_init)
Exemplo n.º 50
0
def test_plot_alignment(tmpdir, renderer):
    """Test plotting of -trans.fif files and MEG sensor layouts."""
    # generate fiducials file for testing
    tempdir = str(tmpdir)
    fiducials_path = op.join(tempdir, 'fiducials.fif')
    fid = [{
        'coord_frame': 5,
        'ident': 1,
        'kind': 1,
        'r': [-0.08061612, -0.02908875, -0.04131077]
    }, {
        'coord_frame': 5,
        'ident': 2,
        'kind': 1,
        'r': [0.00146763, 0.08506715, -0.03483611]
    }, {
        'coord_frame': 5,
        'ident': 3,
        'kind': 1,
        'r': [0.08436285, -0.02850276, -0.04127743]
    }]
    write_dig(fiducials_path, fid, 5)

    renderer._close_all()
    evoked = read_evokeds(evoked_fname)[0]
    sample_src = read_source_spaces(src_fname)
    bti = read_raw_bti(pdf_fname,
                       config_fname,
                       hs_fname,
                       convert=True,
                       preload=False).info
    infos = dict(
        Neuromag=evoked.info,
        CTF=read_raw_ctf(ctf_fname).info,
        BTi=bti,
        KIT=read_raw_kit(sqd_fname).info,
    )
    for system, info in infos.items():
        meg = ['helmet', 'sensors']
        if system == 'KIT':
            meg.append('ref')
        fig = plot_alignment(info,
                             read_trans(trans_fname),
                             subject='sample',
                             subjects_dir=subjects_dir,
                             meg=meg)
        rend = renderer._Renderer(fig=fig)
        rend.close()
    # KIT ref sensor coil def is defined
    renderer._close_all()
    info = infos['Neuromag']
    pytest.raises(TypeError,
                  plot_alignment,
                  'foo',
                  trans_fname,
                  subject='sample',
                  subjects_dir=subjects_dir)
    pytest.raises(OSError,
                  plot_alignment,
                  info,
                  trans_fname,
                  subject='sample',
                  subjects_dir=subjects_dir,
                  src='foo')
    pytest.raises(ValueError,
                  plot_alignment,
                  info,
                  trans_fname,
                  subject='fsaverage',
                  subjects_dir=subjects_dir,
                  src=sample_src)
    sample_src.plot(subjects_dir=subjects_dir,
                    head=True,
                    skull=True,
                    brain='white')
    renderer._close_all()
    # no-head version
    renderer._close_all()
    # all coord frames
    pytest.raises(ValueError, plot_alignment, info)
    plot_alignment(info, surfaces=[])
    for coord_frame in ('meg', 'head', 'mri'):
        fig = plot_alignment(info,
                             meg=['helmet', 'sensors'],
                             dig=True,
                             coord_frame=coord_frame,
                             trans=Path(trans_fname),
                             subject='sample',
                             mri_fiducials=fiducials_path,
                             subjects_dir=subjects_dir,
                             src=src_fname)
    renderer._close_all()
    # EEG only with strange options
    evoked_eeg_ecog_seeg = evoked.copy().pick_types(meg=False, eeg=True)
    evoked_eeg_ecog_seeg.info['projs'] = []  # "remove" avg proj
    evoked_eeg_ecog_seeg.set_channel_types({
        'EEG 001': 'ecog',
        'EEG 002': 'seeg'
    })
    with pytest.warns(RuntimeWarning, match='Cannot plot MEG'):
        plot_alignment(evoked_eeg_ecog_seeg.info,
                       subject='sample',
                       trans=trans_fname,
                       subjects_dir=subjects_dir,
                       surfaces=['white', 'outer_skin', 'outer_skull'],
                       meg=['helmet', 'sensors'],
                       eeg=['original', 'projected'],
                       ecog=True,
                       seeg=True)
    renderer._close_all()

    sphere = make_sphere_model(info=evoked.info, r0='auto', head_radius='auto')
    bem_sol = read_bem_solution(
        op.join(subjects_dir, 'sample', 'bem',
                'sample-1280-1280-1280-bem-sol.fif'))
    bem_surfs = read_bem_surfaces(
        op.join(subjects_dir, 'sample', 'bem',
                'sample-1280-1280-1280-bem.fif'))
    sample_src[0]['coord_frame'] = 4  # hack for coverage
    plot_alignment(
        info,
        subject='sample',
        eeg='projected',
        meg='helmet',
        bem=sphere,
        dig=True,
        surfaces=['brain', 'inner_skull', 'outer_skull', 'outer_skin'])
    plot_alignment(info,
                   trans_fname,
                   subject='sample',
                   meg='helmet',
                   subjects_dir=subjects_dir,
                   eeg='projected',
                   bem=sphere,
                   surfaces=['head', 'brain'],
                   src=sample_src)
    assert all(surf['coord_frame'] == FIFF.FIFFV_COORD_MRI
               for surf in bem_sol['surfs'])
    plot_alignment(info,
                   trans_fname,
                   subject='sample',
                   meg=[],
                   subjects_dir=subjects_dir,
                   bem=bem_sol,
                   eeg=True,
                   surfaces=['head', 'inflated', 'outer_skull', 'inner_skull'])
    assert all(surf['coord_frame'] == FIFF.FIFFV_COORD_MRI
               for surf in bem_sol['surfs'])
    plot_alignment(info,
                   trans_fname,
                   subject='sample',
                   meg=True,
                   subjects_dir=subjects_dir,
                   surfaces=['head', 'inner_skull'],
                   bem=bem_surfs)
    # single-layer BEM can still plot head surface
    assert bem_surfs[-1]['id'] == FIFF.FIFFV_BEM_SURF_ID_BRAIN
    bem_sol_homog = read_bem_solution(
        op.join(subjects_dir, 'sample', 'bem', 'sample-1280-bem-sol.fif'))
    for use_bem in (bem_surfs[-1:], bem_sol_homog):
        with catch_logging() as log:
            plot_alignment(info,
                           trans_fname,
                           subject='sample',
                           meg=True,
                           subjects_dir=subjects_dir,
                           surfaces=['head', 'inner_skull'],
                           bem=use_bem,
                           verbose=True)
        log = log.getvalue()
        assert 'not find the surface for head in the provided BEM model' in log
    # sphere model
    sphere = make_sphere_model('auto', 'auto', evoked.info)
    src = setup_volume_source_space(sphere=sphere)
    plot_alignment(
        info,
        eeg='projected',
        meg='helmet',
        bem=sphere,
        src=src,
        dig=True,
        surfaces=['brain', 'inner_skull', 'outer_skull', 'outer_skin'])
    sphere = make_sphere_model('auto', None, evoked.info)  # one layer
    # no info is permitted
    fig = plot_alignment(trans=trans_fname,
                         subject='sample',
                         meg=False,
                         coord_frame='mri',
                         subjects_dir=subjects_dir,
                         surfaces=['brain'],
                         bem=sphere,
                         show_axes=True)
    renderer._close_all()
    if renderer.get_3d_backend() == 'mayavi':
        import mayavi  # noqa: F401 analysis:ignore
        assert isinstance(fig, mayavi.core.scene.Scene)

    # 3D coil with no defined draw (ConvexHull)
    info_cube = pick_info(info, [0])
    info['dig'] = None
    info_cube['chs'][0]['coil_type'] = 9999
    with pytest.raises(RuntimeError, match='coil definition not found'):
        plot_alignment(info_cube, meg='sensors', surfaces=())
    coil_def_fname = op.join(tempdir, 'temp')
    with open(coil_def_fname, 'w') as fid:
        fid.write(coil_3d)
    with use_coil_def(coil_def_fname):
        plot_alignment(info_cube, meg='sensors', surfaces=(), dig=True)

    # one layer bem with skull surfaces:
    with pytest.raises(ValueError, match='sphere conductor model must have'):
        plot_alignment(info=info,
                       trans=trans_fname,
                       subject='sample',
                       subjects_dir=subjects_dir,
                       surfaces=['brain', 'head', 'inner_skull'],
                       bem=sphere)
    # wrong eeg value:
    with pytest.raises(ValueError, match='eeg must only contain'):
        plot_alignment(info=info,
                       trans=trans_fname,
                       subject='sample',
                       subjects_dir=subjects_dir,
                       eeg='foo')
    # wrong meg value:
    with pytest.raises(ValueError, match='meg must only contain'):
        plot_alignment(info=info,
                       trans=trans_fname,
                       subject='sample',
                       subjects_dir=subjects_dir,
                       meg='bar')
    # multiple brain surfaces:
    with pytest.raises(ValueError, match='Only one brain surface can be plot'):
        plot_alignment(info=info,
                       trans=trans_fname,
                       subject='sample',
                       subjects_dir=subjects_dir,
                       surfaces=['white', 'pial'])
    with pytest.raises(TypeError, match='all entries in surfaces must be'):
        plot_alignment(info=info,
                       trans=trans_fname,
                       subject='sample',
                       subjects_dir=subjects_dir,
                       surfaces=[1])
    with pytest.raises(ValueError, match='Unknown surface type'):
        plot_alignment(info=info,
                       trans=trans_fname,
                       subject='sample',
                       subjects_dir=subjects_dir,
                       surfaces=['foo'])
    fwd_fname = op.join(data_dir, 'MEG', 'sample',
                        'sample_audvis_trunc-meg-eeg-oct-4-fwd.fif')
    fwd = read_forward_solution(fwd_fname)
    plot_alignment(subject='sample',
                   subjects_dir=subjects_dir,
                   trans=trans_fname,
                   fwd=fwd,
                   surfaces='white',
                   coord_frame='head')
    fwd = convert_forward_solution(fwd, force_fixed=True)
    plot_alignment(subject='sample',
                   subjects_dir=subjects_dir,
                   trans=trans_fname,
                   fwd=fwd,
                   surfaces='white',
                   coord_frame='head')

    # fNIRS
    info = read_raw_nirx(nirx_fname).info
    with catch_logging() as log:
        plot_alignment(info, subject='fsaverage', surfaces=(), verbose=True)
    log = log.getvalue()
    assert '26 fnirs locations' in log

    renderer._close_all()
Exemplo n.º 51
0
import numpy as np
import sys
from mne.io import read_raw_ctf
from mne import pick_types
from mne.chpi import _calculate_head_pos_ctf, read_head_pos
sys.path.append(
    '/Users/nkozhemi/Documents/Github/mne_chop_tools-master/mne_pipes')

from annotate_artifacts import (annotate_gfp_artifacts,
                                annotate_motion_artifacts, plot_artifacts,
                                annotate_muscle_artifacts)

top_dir = '/Users/nkozhemi/Desktop/MEG_repo/MEG_children/18011010C/'
ds_fname = op.join(top_dir, 'MEG_Movie_20190319_09.ds')

raw = read_raw_ctf(ds_fname, preload=True)
#raw.set_channel_types({'EEG057': 'eog', 'EEG058': 'ecg'})
#raw.info['bads'] = []

if raw.compensation_grade != 3:
    raw.apply_gradient_compensation(3)

# muscle artifacts
mus_annot, mus_raw = annotate_muscle_artifacts(raw,
                                               art_thresh=2.5,
                                               return_stat_raw=True)

# motion artifacts
pos = _calculate_head_pos_ctf(raw)
mov_annot, raw_hpi = annotate_motion_artifacts(raw, pos, return_stat_raw=True)
Exemplo n.º 52
0
from mne.datasets import spm_face
from mne.preprocessing import ICA, create_eog_epochs
from mne import io, combine_evoked
from mne.minimum_norm import make_inverse_operator, apply_inverse

print(__doc__)

data_path = spm_face.data_path()
subjects_dir = data_path + '/subjects'

###############################################################################
# Load and filter data, set up epochs

raw_fname = data_path + '/MEG/spm/SPM_CTF_MEG_example_faces%d_3D.ds'

raw = io.read_raw_ctf(raw_fname % 1, preload=True)  # Take first run
# Here to save memory and time we'll downsample heavily -- this is not
# advised for real data as it can effectively jitter events!
raw.resample(120., npad='auto')

picks = mne.pick_types(raw.info, meg=True, exclude='bads')
raw.filter(1, 30, method='fir', fir_design='firwin')

events = mne.find_events(raw, stim_channel='UPPT001')

# plot the events to get an idea of the paradigm
mne.viz.plot_events(events, raw.info['sfreq'])

event_ids = {"faces": 1, "scrambled": 2}

tmin, tmax = -0.2, 0.6
Exemplo n.º 53
0
def test_plot_ref_meg():
    """Test plotting ref_meg."""
    raw_ctf = read_raw_ctf(ctf_fname_continuous).crop(0, 1).load_data()
    raw_ctf.plot()
    plt.close('all')
    pytest.raises(ValueError, raw_ctf.plot, group_by='selection')
Exemplo n.º 54
0
import mne
from mne.datasets.brainstorm import bst_raw
from mne.io import read_raw_ctf

print(__doc__)

tmin, tmax, event_id = -0.1, 0.3, 2  # take right-hand somato
reject = dict(mag=4e-12, eog=250e-6)

data_path = bst_raw.data_path()

raw_path = (data_path + '/MEG/bst_raw/' +
            'subj001_somatosensory_20111109_01_AUX-f.ds')
# Here we crop to half the length to save memory
raw = read_raw_ctf(raw_path).crop(0, 180).load_data()
raw.plot()

# set EOG channel
raw.set_channel_types({'EEG058': 'eog'})
raw.set_eeg_reference('average', projection=True)

# show power line interference and remove it
raw.plot_psd(tmax=60., average=False)
raw.notch_filter(np.arange(60, 181, 60), fir_design='firwin')

events = mne.find_events(raw, stim_channel='UPPT001')

# pick MEG channels
picks = mne.pick_types(raw.info,
                       meg=True,
Exemplo n.º 55
0
subject = 'bst_auditory'
subjects_dir = op.join(data_path, 'subjects')

raw_fname1 = op.join(data_path, 'MEG', 'bst_auditory',
                     'S01_AEF_20131218_01.ds')
raw_fname2 = op.join(data_path, 'MEG', 'bst_auditory',
                     'S01_AEF_20131218_02.ds')
erm_fname = op.join(data_path, 'MEG', 'bst_auditory',
                    'S01_Noise_20131218_01.ds')

###############################################################################
# In the memory saving mode we use ``preload=False`` and use the memory
# efficient IO which loads the data on demand. However, filtering and some
# other functions require the data to be preloaded in the memory.
preload = not use_precomputed
raw = read_raw_ctf(raw_fname1, preload=preload)
n_times_run1 = raw.n_times
mne.io.concatenate_raws([raw, read_raw_ctf(raw_fname2, preload=preload)])
raw_erm = read_raw_ctf(erm_fname, preload=preload)

###############################################################################
# Data channel array consisted of 274 MEG axial gradiometers, 26 MEG reference
# sensors and 2 EEG electrodes (Cz and Pz).
# In addition:
#
#   - 1 stim channel for marking presentation times for the stimuli
#   - 1 audio channel for the sent signal
#   - 1 response channel for recording the button presses
#   - 1 ECG bipolar
#   - 2 EOG bipolar (vertical and horizontal)
#   - 12 head tracking channels
Exemplo n.º 56
0
def test_read_ctf():
    """Test CTF reader."""
    temp_dir = _TempDir()
    out_fname = op.join(temp_dir, 'test_py_raw.fif')

    # Create a dummy .eeg file so we can test our reading/application of it
    os.mkdir(op.join(temp_dir, 'randpos'))
    ctf_eeg_fname = op.join(temp_dir, 'randpos', ctf_fname_catch)
    shutil.copytree(op.join(ctf_dir, ctf_fname_catch), ctf_eeg_fname)
    with pytest.warns(RuntimeWarning, match='RMSP .* changed to a MISC ch'):
        raw = _test_raw_reader(read_raw_ctf, directory=ctf_eeg_fname)
    picks = pick_types(raw.info, meg=False, eeg=True)
    pos = np.random.RandomState(42).randn(len(picks), 3)
    fake_eeg_fname = op.join(ctf_eeg_fname, 'catch-alp-good-f.eeg')
    # Create a bad file
    with open(fake_eeg_fname, 'wb') as fid:
        fid.write('foo\n'.encode('ascii'))
    pytest.raises(RuntimeError, read_raw_ctf, ctf_eeg_fname)
    # Create a good file
    with open(fake_eeg_fname, 'wb') as fid:
        for ii, ch_num in enumerate(picks):
            args = (str(ch_num + 1), raw.ch_names[ch_num],) + tuple(
                '%0.5f' % x for x in 100 * pos[ii])  # convert to cm
            fid.write(('\t'.join(args) + '\n').encode('ascii'))
    pos_read_old = np.array([raw.info['chs'][p]['loc'][:3] for p in picks])
    with pytest.warns(RuntimeWarning, match='RMSP .* changed to a MISC ch'):
        raw = read_raw_ctf(ctf_eeg_fname)  # read modified data
    pos_read = np.array([raw.info['chs'][p]['loc'][:3] for p in picks])
    assert_allclose(apply_trans(raw.info['ctf_head_t'], pos), pos_read,
                    rtol=1e-5, atol=1e-5)
    assert (pos_read == pos_read_old).mean() < 0.1
    shutil.copy(op.join(ctf_dir, 'catch-alp-good-f.ds_randpos_raw.fif'),
                op.join(temp_dir, 'randpos', 'catch-alp-good-f.ds_raw.fif'))

    # Create a version with no hc, starting out *with* EEG pos (error)
    os.mkdir(op.join(temp_dir, 'nohc'))
    ctf_no_hc_fname = op.join(temp_dir, 'no_hc', ctf_fname_catch)
    shutil.copytree(ctf_eeg_fname, ctf_no_hc_fname)
    remove_base = op.join(ctf_no_hc_fname, op.basename(ctf_fname_catch[:-3]))
    os.remove(remove_base + '.hc')
    with pytest.warns(RuntimeWarning, match='MISC channel'):
        pytest.raises(RuntimeError, read_raw_ctf, ctf_no_hc_fname)
    os.remove(remove_base + '.eeg')
    shutil.copy(op.join(ctf_dir, 'catch-alp-good-f.ds_nohc_raw.fif'),
                op.join(temp_dir, 'no_hc', 'catch-alp-good-f.ds_raw.fif'))

    # All our files
    use_fnames = [op.join(ctf_dir, c) for c in ctf_fnames]
    for fname in use_fnames:
        raw_c = read_raw_fif(fname + '_raw.fif', preload=True)
        with pytest.warns(None):  # sometimes matches "MISC channel"
            raw = read_raw_ctf(fname)

        # check info match
        assert_array_equal(raw.ch_names, raw_c.ch_names)
        assert_allclose(raw.times, raw_c.times)
        assert_allclose(raw._cals, raw_c._cals)
        assert_equal(raw.info['meas_id']['version'],
                     raw_c.info['meas_id']['version'] + 1)
        for t in ('dev_head_t', 'dev_ctf_t', 'ctf_head_t'):
            assert_allclose(raw.info[t]['trans'], raw_c.info[t]['trans'],
                            rtol=1e-4, atol=1e-7)
        for key in ('acq_pars', 'acq_stim', 'bads',
                    'ch_names', 'custom_ref_applied', 'description',
                    'events', 'experimenter', 'highpass', 'line_freq',
                    'lowpass', 'nchan', 'proj_id', 'proj_name',
                    'projs', 'sfreq', 'subject_info'):
            assert_equal(raw.info[key], raw_c.info[key], key)
        if op.basename(fname) not in single_trials:
            # We don't force buffer size to be smaller like MNE-C
            assert raw.buffer_size_sec == raw_c.buffer_size_sec
        assert_equal(len(raw.info['comps']), len(raw_c.info['comps']))
        for c1, c2 in zip(raw.info['comps'], raw_c.info['comps']):
            for key in ('colcals', 'rowcals'):
                assert_allclose(c1[key], c2[key])
            assert_equal(c1['save_calibrated'], c2['save_calibrated'])
            for key in ('row_names', 'col_names', 'nrow', 'ncol'):
                assert_array_equal(c1['data'][key], c2['data'][key])
            assert_allclose(c1['data']['data'], c2['data']['data'], atol=1e-7,
                            rtol=1e-5)
        assert_allclose(raw.info['hpi_results'][0]['coord_trans']['trans'],
                        raw_c.info['hpi_results'][0]['coord_trans']['trans'],
                        rtol=1e-5, atol=1e-7)
        assert_equal(len(raw.info['chs']), len(raw_c.info['chs']))
        for ii, (c1, c2) in enumerate(zip(raw.info['chs'], raw_c.info['chs'])):
            for key in ('kind', 'scanno', 'unit', 'ch_name', 'unit_mul',
                        'range', 'coord_frame', 'coil_type', 'logno'):
                if c1['ch_name'] == 'RMSP' and \
                        'catch-alp-good-f' in fname and \
                        key in ('kind', 'unit', 'coord_frame', 'coil_type',
                                'logno'):
                    continue  # XXX see below...
                assert_equal(c1[key], c2[key], err_msg=key)
            for key in ('cal',):
                assert_allclose(c1[key], c2[key], atol=1e-6, rtol=1e-4,
                                err_msg='raw.info["chs"][%d][%s]' % (ii, key))
            # XXX 2016/02/24: fixed bug with normal computation that used
            # to exist, once mne-C tools are updated we should update our FIF
            # conversion files, then the slices can go away (and the check
            # can be combined with that for "cal")
            for key in ('loc',):
                if c1['ch_name'] == 'RMSP' and 'catch-alp-good-f' in fname:
                    continue
                if (c2[key][:3] == 0.).all():
                    check = [np.nan] * 3
                else:
                    check = c2[key][:3]
                assert_allclose(c1[key][:3], check, atol=1e-6, rtol=1e-4,
                                err_msg='raw.info["chs"][%d][%s]' % (ii, key))
                if (c2[key][3:] == 0.).all():
                    check = [np.nan] * 3
                else:
                    check = c2[key][9:12]
                assert_allclose(c1[key][9:12], check, atol=1e-6, rtol=1e-4,
                                err_msg='raw.info["chs"][%d][%s]' % (ii, key))

        # Make sure all digitization points are in the MNE head coord frame
        for p in raw.info['dig']:
            assert_equal(p['coord_frame'], FIFF.FIFFV_COORD_HEAD,
                         err_msg='dig points must be in FIFF.FIFFV_COORD_HEAD')

        if fname.endswith('catch-alp-good-f.ds'):  # omit points from .pos file
            raw.info['dig'] = raw.info['dig'][:-10]

        # XXX: Next test would fail because c-tools assign the fiducials from
        # CTF data as HPI. Should eventually clarify/unify with Matti.
        # assert_dig_allclose(raw.info, raw_c.info)

        # check data match
        raw_c.save(out_fname, overwrite=True, buffer_size_sec=1.)
        raw_read = read_raw_fif(out_fname)

        # so let's check tricky cases based on sample boundaries
        rng = np.random.RandomState(0)
        pick_ch = rng.permutation(np.arange(len(raw.ch_names)))[:10]
        bnd = int(round(raw.info['sfreq'] * raw.buffer_size_sec))
        assert_equal(bnd, raw._raw_extras[0]['block_size'])
        assert_equal(bnd, block_sizes[op.basename(fname)])
        slices = (slice(0, bnd), slice(bnd - 1, bnd), slice(3, bnd),
                  slice(3, 300), slice(None))
        if len(raw.times) >= 2 * bnd:  # at least two complete blocks
            slices = slices + (slice(bnd, 2 * bnd), slice(bnd, bnd + 1),
                               slice(0, bnd + 100))
        for sl_time in slices:
            assert_allclose(raw[pick_ch, sl_time][0],
                            raw_c[pick_ch, sl_time][0])
            assert_allclose(raw_read[pick_ch, sl_time][0],
                            raw_c[pick_ch, sl_time][0])
        # all data / preload
        with pytest.warns(None):  # sometimes MISC
            raw = read_raw_ctf(fname, preload=True)
        assert_allclose(raw[:][0], raw_c[:][0], atol=1e-15)
        # test bad segment annotations
        if 'testdata_ctf_short.ds' in fname:
            assert 'bad' in raw.annotations.description[0]
            assert_allclose(raw.annotations.onset, [2.15])
            assert_allclose(raw.annotations.duration, [0.0225])

    pytest.raises(TypeError, read_raw_ctf, 1)
    pytest.raises(ValueError, read_raw_ctf, ctf_fname_continuous + 'foo.ds')
    # test ignoring of system clock
    read_raw_ctf(op.join(ctf_dir, ctf_fname_continuous), 'ignore')
    pytest.raises(ValueError, read_raw_ctf,
                  op.join(ctf_dir, ctf_fname_continuous), 'foo')
Exemplo n.º 57
0
###############################################################################
# Neuromag
# --------

kwargs = dict(eeg=False, coord_frame='meg', show_axes=True, verbose=True)

raw = read_raw_fif(sample.data_path() + '/MEG/sample/sample_audvis_raw.fif')
fig = plot_alignment(raw.info, meg=('helmet', 'sensors'), **kwargs)
set_3d_title(figure=fig, title='Neuromag')

###############################################################################
# CTF
# ---

raw = read_raw_ctf(spm_face.data_path() +
                   '/MEG/spm/SPM_CTF_MEG_example_faces1_3D.ds')
fig = plot_alignment(raw.info, meg=('helmet', 'sensors', 'ref'), **kwargs)
set_3d_title(figure=fig, title='CTF 275')

###############################################################################
# BTi
# ---

bti_path = op.abspath(op.dirname(mne.__file__)) + '/io/bti/tests/data/'
raw = read_raw_bti(op.join(bti_path, 'test_pdf_linux'),
                   op.join(bti_path, 'test_config_linux'),
                   op.join(bti_path, 'test_hs_linux'))
fig = plot_alignment(raw.info, meg=('helmet', 'sensors', 'ref'), **kwargs)
set_3d_title(figure=fig, title='Magnes 3600wh')

###############################################################################
Exemplo n.º 58
0
 fname_bhv = list()
 files = os.listdir(op.join(path_data, subject, 'behavdata'))
 fname_bhv.extend(([
     op.join(fname_raw + '/behavdata/') + f for f in files if 'WorkMem' in f
 ]))
 for fname_behavior in fname_bhv:
     events_behavior = get_events_from_mat(fname_behavior)
 # Read raw MEG data and extract event triggers
 runs = list()
 files = os.listdir(fname_raw)
 runs.extend(([op.join(fname_raw + '/') + f for f in files if '.ds' in f]))
 events_meg = list()
 for run_number, this_run in enumerate(runs):
     fname_raw = op.join(path_data, subject, this_run)
     print(fname_raw)
     raw = read_raw_ctf(fname_raw, preload=True, system_clock='ignore')
     channel_trigger = np.where(np.array(raw.ch_names) == 'USPT001')[0][0]
     # trigger baseline is 255
     # Replace 255 values with 0 for easier reading of events
     trigger_baseline = np.where(raw._data[channel_trigger, :] == 255)[0]
     raw._data[channel_trigger, trigger_baseline] = 0.
     # find triggers
     events_meg_ = mne.find_events(raw)
     # Add 48ms to the trigger events (according to delay with photodiod)
     events_meg_ = np.array(events_meg_, float)
     events_meg_[:, 0] += round(.048 * raw.info['sfreq'])
     events_meg_ = np.array(events_meg_, int)
     # to keep the run from which the event was found
     events_meg_[:, 1] = run_number
     events_meg.append(events_meg_)
 # concatenate all meg events
subject = 'bst_auditory'
subjects_dir = op.join(data_path, 'subjects')

raw_fname1 = op.join(data_path, 'MEG', 'bst_auditory',
                     'S01_AEF_20131218_01.ds')
raw_fname2 = op.join(data_path, 'MEG', 'bst_auditory',
                     'S01_AEF_20131218_02.ds')
erm_fname = op.join(data_path, 'MEG', 'bst_auditory',
                    'S01_Noise_20131218_01.ds')

###############################################################################
# In the memory saving mode we use ``preload=False`` and use the memory
# efficient IO which loads the data on demand. However, filtering and some
# other functions require the data to be preloaded in the memory.
preload = not use_precomputed
raw = read_raw_ctf(raw_fname1, preload=preload)
n_times_run1 = raw.n_times
mne.io.concatenate_raws([raw, read_raw_ctf(raw_fname2, preload=preload)])
raw_erm = read_raw_ctf(erm_fname, preload=preload)

###############################################################################
# Data channel array consisted of 274 MEG axial gradiometers, 26 MEG reference
# sensors and 2 EEG electrodes (Cz and Pz).
# In addition:
#
#   - 1 stim channel for marking presentation times for the stimuli
#   - 1 audio channel for the sent signal
#   - 1 response channel for recording the button presses
#   - 1 ECG bipolar
#   - 2 EOG bipolar (vertical and horizontal)
#   - 12 head tracking channels
Exemplo n.º 60
0
if len(sys.argv) != 3:
    print("usage: {} subject $ds".format(sys.argv[0]))
    sys.exit(1)

subject = sys.argv[1]
dsname = sys.argv[2]

try:
    FShome = os.environ['FREESURFER_HOME']
except KeyError:
    print("You must set the FREESURFER_HOME environment variable!")
    sys.exit(1)

try:
    Subjdir = os.environ['SUBJECTS_DIR']
except KeyError:
    Subjdir = op.join(FShome, "subjects")
    print("Note: Using the default SUBJECTS_DIR:", Subjdir)

name = op.join(Subjdir, subject, "bem", "{}-fiducials.fif".format(subject))
fids = read_fiducials(name)
fidc = _fiducial_coords(fids[0])

raw = read_raw_ctf(dsname, clean_names = True, preload = False)
fidd = _fiducial_coords(raw.info['dig'])

xform = fit_matched_points(fidd, fidc, weights = [1, 10, 1])
t = Transform(FIFF.FIFFV_COORD_HEAD, FIFF.FIFFV_COORD_MRI, xform)
name = op.join(Subjdir, subject, "bem", "{}-trans.fif".format(subject))
write_trans(name, t)