# Setup for reading the raw data
raw = fiff.Raw(raw_fname, verbose=False)
events = mne.find_events(raw, stim_channel='STI 014')
inverse_operator = read_inverse_operator(fname_inv)
raw.info['bads'] = ['MEG 2443', 'EEG 053']

# picks MEG gradiometers
picks = fiff.pick_types(raw.info, meg=True, eeg=False, eog=True,
                        stim=False, exclude='bads')

tmin, tmax = 0, 120  # use the first 120s of data
fmin, fmax = 4, 100  # look at frequencies between 4 and 100Hz
NFFT = 2048  # the FFT size (NFFT). Ideally a power of 2
label = mne.read_label(fname_label)

stc = compute_source_psd(raw, inverse_operator, lambda2=1. / 9., method="dSPM",
                         tmin=tmin, tmax=tmax, fmin=fmin, fmax=fmax,
                         pick_ori="normal", NFFT=NFFT, label=label)

stc.save('psd_dSPM')

###############################################################################
# View PSD of sources in label
import matplotlib.pyplot as plt
plt.plot(1e3 * stc.times, stc.data.T)
plt.xlabel('Frequency (Hz)')
plt.ylabel('PSD (dB)')
plt.title('Source Power Spectrum (PSD)')
plt.show()
Exemplo n.º 2
0
                       eeg=False,
                       eog=True,
                       stim=False,
                       exclude='bads')

tmin, tmax = 0, 120  # use the first 120s of data
fmin, fmax = 4, 100  # look at frequencies between 4 and 100Hz
n_fft = 2048  # the FFT size (n_fft). Ideally a power of 2
label = mne.read_label(fname_label)

stc = compute_source_psd(raw,
                         inverse_operator,
                         lambda2=1. / 9.,
                         method="dSPM",
                         tmin=tmin,
                         tmax=tmax,
                         fmin=fmin,
                         fmax=fmax,
                         pick_ori="normal",
                         n_fft=n_fft,
                         label=label,
                         dB=True)

stc.save('psd_dSPM')

###############################################################################
# View PSD of sources in label
plt.plot(1e3 * stc.times, stc.data.T)
plt.xlabel('Frequency (Hz)')
plt.ylabel('PSD (dB)')
plt.title('Source Power Spectrum (PSD)')
plt.show()
Exemplo n.º 3
0
                        eeg=False,
                        eog=True,
                        stim=False,
                        exclude='bads')

tmin, tmax = 0, 120  # use the first 120s of data
fmin, fmax = 4, 100  # look at frequencies between 4 and 100Hz
NFFT = 2048  # the FFT size (NFFT). Ideally a power of 2
label = mne.read_label(fname_label)

stc = compute_source_psd(raw,
                         inverse_operator,
                         lambda2=1. / 9.,
                         method="dSPM",
                         tmin=tmin,
                         tmax=tmax,
                         fmin=fmin,
                         fmax=fmax,
                         pick_normal=True,
                         NFFT=NFFT,
                         label=label)

stc.save('psd_dSPM')

###############################################################################
# View PSD of sources in label
import pylab as pl
pl.plot(1e3 * stc.times, stc.data.T)
pl.xlabel('Frequency (Hz)')
pl.ylabel('PSD (dB)')
pl.title('Source Power Spectrum (PSD)')
Exemplo n.º 4
0
def intra(subj_list, fmin, fmax):
    '''
    Performs main process, including generation of inverse solution and PSD computation.
    '''
    
    for subj in subj_list:

        print('Now beginning intra processing on ' + subj + '...\n') * 5

        # Set function parameters
        fname_raw = data_path + subj[:5] + '/' + subj 
        fname_fwd = data_path + subj[:5] + '/' + subj[:-4] + '-ico-4-fwd.fif'

        # Load data 
        raw = fiff.Raw(fname_raw) 
        forward_meg = mne.read_forward_solution(fname_fwd) 

        # Estimate noise covariance from the raw data 
        precov = mne.compute_raw_data_covariance(raw, reject=dict(eog=150e-6)) 
        write_cov(data_path + subj[:5] + '/' + subj[:-4] + '-cov.fif', precov) 

        # Find events from raw file
        events = mne.find_events(raw, stim_channel='STI 014')

        # Write events to file
        mne.write_events(data_path + subj[:5] + '/' + subj[:-4] + '-eve.fif', events)

        # Set up pick list:
        include = []
        exclude = raw.info['bads']
        picks = fiff.pick_types(raw.info, meg=True, eeg=False, stim=True, eog=True, include=include, exclude=exclude)

        # Read epochs and remove bad epochs
        epochs = mne.Epochs(raw, events, event_id, tmin, tmax, proj=True, picks=picks, baseline=(None, 0), preload=True, reject=dict(grad=4000e-13, mag=4e-12, eog=150e-6)) 

        # Average epochs to produce an evoked dataset, then write to disk
        evoked = epochs.average()
        evoked.save(data_path + subj[:5] + '/' + subj[:-4] + '-ave.fif')

        # Regularize noise cov
        cov = mne.cov.regularize(precov, evoked.info, grad=0.05, mag=0.05, eeg=0.1, proj=True)

        # Restrict forward solution as necessary for MEG
        restricted_fwd = mne.fiff.pick_types_forward(forward_meg, meg=True, eeg=False) 

        # Make inverse operator
        info = evoked.info
        inverse_operator = make_inverse_operator(info, restricted_fwd, cov, loose=None, depth=0.8)

        # Pull data for averaging later
        epc_array = epochs.get_data()

        # Compute the inverse solution
        inv = apply_inverse(evoked, inverse_operator, lambda2, "dSPM", pick_normal=False)
        inv.save(data_path + subj[:5] + '/' + subj[:-4] + '-inv.fif')

        # picks MEG gradiometers
        picks = fiff.pick_types(raw.info, meg=True, eeg=False, eog=True, stim=False, exclude=exclude)

        # Compute source power spectral density and save to file
        psd = compute_source_psd(raw, inverse_operator, method='dSPM', lambda2=lambda2, fmin=fmin, fmax=fmax, NFFT=2048)
        psd.save(data_path + subj[:5] + '/' + subj[:-4] + '-psd.fif')
Exemplo n.º 5
0
                                     trans,
                                     src=src,
                                     bem=bem,
                                     eeg=False,
                                     verbose=True)
     # Compute and apply inverse to PSD estimated using multitaper + Welch
     noise_cov = mne.compute_raw_covariance(raw_erm, n_jobs=18)
     inverse_operator = make_inverse_operator(raw.info,
                                              forward=fwd,
                                              noise_cov=noise_cov,
                                              verbose=True)
     stc_psd, evoked_psd = compute_source_psd(raw,
                                              inverse_operator,
                                              method='MNE',
                                              dB=False,
                                              return_sensor=True,
                                              low_bias=True,
                                              adaptive=True,
                                              n_jobs=config.N_JOBS,
                                              n_fft=n_fft,
                                              verbose=True)
     stc_psds.append(stc_psd)
     evoked_psds.append(evoked_psd)
 grand_ave_stc /= len(stc_psds)
 grand_ave_evo = mne.grand_average(evoked_psds)
 topos = dict()
 stcs = dict()
 topo_norm = grand_ave_evo.data.sum(axis=1, keepdims=True)
 stc_norm = grand_ave_stc.sum()
 # Normalize each sensor/source by the total power across freqs
 for band, limits in defaults.bands.items():
     data = evoked_psd.copy().crop(*limits).data.sum(axis=1, keepdims=True)