def train_classifer_main():

    np.random.seed(11)
    data_path = '/data3/deepak_interns/vikram/vikram/mnist/'
    batch_size = 4

    #data_path = '../data/cifar-100-python'
    model_save_path = './models'

    print 'Loading Dataset'
    mnist = mnist_data_set(data_path, batch_size)
    print 'done loading'

    datasets = mnist.data_sets
    print type(datasets['train'].X)
    print np.max(datasets['train'].X), np.min(datasets['train'].X)
    print np.max(datasets['test'].X), np.min(datasets['test'].X)
    print datasets['train'].X.shape, datasets['train'].Y.shape
    print datasets['test'].X.shape, datasets['test'].Y.shape

    data_shape = datasets['train'].X.shape
    data_shape = (batch_size, ) + data_shape[1:]
    print 'Data shape:', data_shape

    path = os.path.join(model_save_path, 'train1')

    print 'loading snn'
    f = open(os.path.join(path, 'snn_autonet' + '.save'), 'rb')
    snn_loaded_object = cPickle.load(f)
    f.close()
    print('Done')

    path = os.path.join(model_save_path, 'classifer')
    if not os.path.exists(path):
        os.makedirs(path)
        os.makedirs(os.path.join(path, 'snapshots'))

    print('creating classifer')
    classifier = softmax_classifier()
    #print('loading classifier')
    #f = open(os.path.join(path, 'softmax_classifer' + '.save'), 'rb')
    #classifier=cPickle.load(f)
    #f.close()
    #print('done')

    print('classifier TRAINING ...')
    train_classifer(classifier, datasets, path, snn_loaded_object)
    print('completed training classifer!')
    print('saving classifier...')
    f = open(os.path.join(path, classifier.name + '.save'), 'wb')
    #theano.misc.pkl_utils.dump()
    sys.setrecursionlimit(50000)
    cPickle.dump(classifier, f, protocol=cPickle.HIGHEST_PROTOCOL)
    f.close()
    print('Done')
Exemplo n.º 2
0
def train_snn_main():

    np.random.seed(64)
    data_path =  '/data3/deepak_interns/vikram/vikram/mnist/'
    batch_size = 4

    #data_path = '../data/cifar-100-python'
    model_save_path = './models'


    print 'Loading Dataset'
    mnist = mnist_data_set(data_path, batch_size)
    print 'done loading'


    datasets = mnist.data_sets
    print type(datasets['train'].X)
    print np.max(datasets['train'].X), np.min(datasets['train'].X)
    print datasets['train'].X.shape
    #print datasets['valid'].X.shape
    data_shape = datasets['train'].X.shape
    data_shape = (batch_size, ) + data_shape[1: ]
    print 'Data shape:', data_shape

    path = os.path.join(model_save_path, 'train1')
    if not os.path.exists(path):
        os.makedirs(path)

    print 'Creating snn'
    # print 'loading snn'
    # f = open(os.path.join(path, 'snn_autonet' + '.save'), 'rb')
    # network=cPickle.load(f)
    network = snn(data_shape)

    assert(np.amin(network.full_net_layers[-1].W.eval())>=0)
    assert(np.amax(network.full_net_layers[-1].W.eval())<=1)
    # print(np.amin(network.all_layers[-1].W.eval()))

    #np.random.seed(8)
    # path = os.path.join(model_save_path, 'snapshots')
    # if not os.path.exists(path):
    #     os.makedirs(path)
    print('SNN TRAINING ...')
    train_snn(network, datasets, path)
    print('completed training snn !')
    print('saving trained snn...')
    f = open(os.path.join(path, network.name + '.save'), 'wb')
    #theano.misc.pkl_utils.dump()
    sys.setrecursionlimit(50000)
    cPickle.dump(network, f, protocol = cPickle.HIGHEST_PROTOCOL)
    f.close()
    print('Done')
Exemplo n.º 3
0
	path = os.path.join(model_save_path, 'train1')

	print 'loading snn'
	f = open(os.path.join(path, 'snn_autonet' + '.save'), 'rb')
	network=cPickle.load(f)
	f.close()
	print('Done')

	batch_size = 4

	#snn_loaded_object.all_layers[-1].stdp_enabled=False

	data_path = '/data3/deepak_interns/vikram/vikram/mnist/'

	print 'Loading Dataset'
	mnist = mnist_data_set(data_path, batch_size)
	print 'done loading'


	datasets = mnist.data_sets
	print type(datasets['train'].X)
	print np.max(datasets['train'].X), np.min(datasets['train'].X)
	
	
	data_shape = datasets['train'].X.shape
	data_shape = (batch_size, ) + data_shape[1: ]
	print 'Data shape:', data_shape

	def dog_output(input_image):

	    _,channels,height,width=input_image.shape