def extract(cls, node):
        mode = onnx_attr(node,
                         'mode',
                         's',
                         default='constant',
                         dst_type=lambda x: x.decode())
        pads = onnx_attr(node,
                         'pads',
                         'ints',
                         dst_type=lambda x: np.array(x, dtype=np.int64))
        value = onnx_attr(node, 'value', 'f', default=0.)

        assert pads is not None

        # MO Pad op and ONNX Pad op have different format for pads values
        # MO Pad has Dx2 where D is the total number of dimensions
        # ONNX Pad pads flat layout, so
        # need to reshape and transpose

        pads = np.transpose(pads.reshape([2, -1]))

        Pad.update_node_stat(node, {
            'mode': mode,
            'pads': pads,
            'fill_value': value
        })
        return cls.enabled
Exemplo n.º 2
0
    def extract(node):
        attrs = get_mxnet_layer_attrs(node.symbol_dict)
        pads = np.array(list(attrs.tuple('pad_width', int, None)))
        pads = pads.reshape([-1, 2])
        value = attrs.float('constant_value', 0.0)

        node_attrs = {
            'pads': pads,
            'mode': attrs.str('mode', None),
            'fill_value': value,
        }

        Pad.update_node_stat(node, node_attrs)
        return __class__.enabled
Exemplo n.º 3
0
 def extract(node):
     Pad.update_node_stat(node)
     return __class__.enabled
Exemplo n.º 4
0
 def extract(node):
     Pad.update_node_stat(node, {'mode': node.pb.attr['mode'].s.decode('utf-8').lower()})
     return __class__.enabled
 def extract(cls, node):
     Pad.update_node_stat(node)
     return cls.enabled