Exemplo n.º 1
0
    def test_FilterBankSSVEP_filters(self):
        # can work with filter bank
        paradigm = FilterBankSSVEP(filters=[(10.5, 11.5), (12.5, 13.5)])
        dataset = FakeDataset(event_list=['13', '15', '17'], paradigm='ssvep')
        X, labels, metadata = paradigm.get_data(dataset, subjects=[1])

        # X must be a 4D array with d=2 as last dimension for the 2 filters
        self.assertEqual(len(X.shape), 4)
        self.assertEqual(X.shape[-1], 2)
Exemplo n.º 2
0
    def test_FilterBankSSVEP_paradigm(self):
        # FilterBankSSVEP with all events
        paradigm = FilterBankSSVEP(n_classes=None)
        dataset = FakeDataset(event_list=['13', '15', '17', '19'],
                              paradigm='ssvep')
        X, labels, metadata = paradigm.get_data(dataset, subjects=[1])

        # X must be a 4D array
        self.assertEqual(len(X.shape), 4)
        # X must be a 4D array with d=4 as last dimension for the 4 events
        self.assertEqual(X.shape[-1], 4)
Exemplo n.º 3
0
    def test_FilterBankSSVEP_filters(self):
        # can work with filter bank
        paradigm = FilterBankSSVEP(filters=[(10.5, 11.5), (12.5, 13.5)])
        dataset = FakeDataset(event_list=["13", "15", "17"], paradigm="ssvep")
        X, labels, metadata = paradigm.get_data(dataset, subjects=[1])

        # X must be a 4D array with d=2 as last dimension for the 2 filters
        self.assertEqual(len(X.shape), 4)
        self.assertEqual(X.shape[-1], 2)
        # should return epochs
        epochs, _, _ = paradigm.get_data(dataset, subjects=[1], return_epochs=True)
        self.assertIsInstance(epochs, BaseEpochs)
Exemplo n.º 4
0
    def test_FilterBankSSVEP_paradigm(self):
        # FilterBankSSVEP with all events
        paradigm = FilterBankSSVEP(n_classes=None)
        dataset = FakeDataset(event_list=["13", "15", "17", "19"], paradigm="ssvep")
        X, labels, metadata = paradigm.get_data(dataset, subjects=[1])

        # X must be a 4D array
        self.assertEqual(len(X.shape), 4)
        # X must be a 4D array with d=4 as last dimension for the 4 events
        self.assertEqual(X.shape[-1], 4)
        # should return epochs
        epochs, _, _ = paradigm.get_data(dataset, subjects=[1], return_epochs=True)
        self.assertIsInstance(epochs, BaseEpochs)
Exemplo n.º 5
0
#
# We will load the data from the first 2 subjects of the SSVEP_Exo dataset
# and compare two algorithms on this set. One of the algorithm could only
# process class associated with a stimulation frequency, we will thus drop
# the resting class. As the resting class is the last defined class, picking
# the first three classes (out of four) allows to focus only on the stimulation
# frequency.

n_subject = 2
# for i in range(n_subject):
#     SSVEPExo()._get_single_subject_data(i + 1)
dataset = SSVEPExo()
dataset.subject_list = dataset.subject_list[:n_subject]
interval = dataset.interval
paradigm = SSVEP(fmin=10, fmax=25, n_classes=3)
paradigm_fb = FilterBankSSVEP(filters=None, n_classes=3)

# Classes are defined by the frequency of the stimulation, here we use
# the first two frequencies of the dataset, 13 and 17 Hz.
# The evaluation function uses a LabelEncoder, transforming them
# to 0 and 1

freqs = paradigm.used_events(dataset)

##############################################################################
# Create pipelines
# ----------------
#
# Pipelines must be a dict of sklearn pipeline transformer.
# The first pipeline uses Riemannian geometry, by building an extended
# covariance matrices from the signal filtered around the considered
Exemplo n.º 6
0
    time_window = np.array(sample)

    sample, timestamp = inlet.pull_sample()
    sample = np.array(sample)
    return np.column_stack((sample, time_window))


###############################################################################
## Option to online retraining
retrain = True

## FIles to offilne base
dataset = SSVEPExo(subjects=11)
interval = dataset.interval

paradigm_fb = FilterBankSSVEP(filters=None, n_classes=4)

filtered_db = paradigm_fb.get_data(dataset, return_epochs=False)

pipeline = make_pipeline(
    ExtendedSSVEPSignal(),
    Covariances(estimator="lwf"),
    TangentSpace(),
    LogisticRegression(solver="lbfgs", multi_class="auto"),
)

model = pipeline.fit()

# End of offline training

# EEG stream on the lab network