Exemplo n.º 1
0
def _compute_targets(ex_rois, gt_rois, gt_rrois, gt_quadrois, labels):
    """Compute bounding-box regression targets for an image."""

    assert ex_rois.shape[0] == gt_rois.shape[0]
    assert ex_rois.shape[1] == 4
    assert gt_rois.shape[1] == 4
    assert gt_rrois.shape[1] == 5
    assert gt_quadrois.shape[1] == 8

    targets = bbox_transform(ex_rois, gt_rois)
    rtargets = rbox_transform(ex_rois, gt_rrois)
    quadtargets = quadbox_transform(ex_rois, gt_quadrois)

    if cfg.TRAIN.BBOX_NORMALIZE_TARGETS_PRECOMPUTED:
        # Optionally normalize targets by a precomputed mean and stdev
        targets = ((targets - np.array(cfg.TRAIN.BBOX_NORMALIZE_MEANS))
                   / np.array(cfg.TRAIN.BBOX_NORMALIZE_STDS))

    if cfg.TRAIN.RBOX_NORMALIZE_TARGETS_PRECOMPUTED:
        # Optionally normalize targets by a precomputed mean and stdev
        rtargets = ((rtargets - np.array(cfg.TRAIN.RBOX_NORMALIZE_MEANS))
                    / np.array(cfg.TRAIN.RBOX_NORMALIZE_STDS))

    if cfg.TRAIN.QUADBOX_NORMALIZE_TARGETS_PRECOMPUTED:
        # Optionally normalize targets by a precomputed mean and stdev
        quadtargets = ((quadtargets - np.array(cfg.TRAIN.QUADBOX_NORMALIZE_MEANS))
                       / np.array(cfg.TRAIN.QUADBOX_NORMALIZE_STDS))

    return np.hstack(
        (labels[:, np.newaxis], targets)).astype(np.float32, copy=False), \
           np.hstack(
               (labels[:, np.newaxis], rtargets)).astype(np.float32, copy=False), \
           np.hstack(
               (labels[:, np.newaxis], quadtargets)).astype(np.float32, copy=False)
Exemplo n.º 2
0
def _compute_targets(ex_rois, gt_rois):
    # 计算一张照片的边界框回归目标
    assert ex_rois.shape[0] == gt_rois.shape[0]
    assert ex_rois.shape[1] == 4
    assert gt_rois.shape[1] == 5
    return bbox_transform(ex_rois, gt_rois[:, :4]).astype(np.float32,
                                                          copy=False)
Exemplo n.º 3
0
def _compute_targets(ex_rois, gt_rois):
  """Compute bounding-box regression targets for an image."""

  assert ex_rois.shape[0] == gt_rois.shape[0]
  assert ex_rois.shape[1] == 4
  assert gt_rois.shape[1] == 5

  return bbox_transform(torch.from_numpy(ex_rois), torch.from_numpy(gt_rois[:, :4])).numpy()
Exemplo n.º 4
0
def _compute_targets(ex_rois, gt_rois):
  """Compute bounding-box regression targets for an image."""

  assert ex_rois.shape[0] == gt_rois.shape[0]
  assert ex_rois.shape[1] == 4
  assert gt_rois.shape[1] == 5

  return bbox_transform(ex_rois, gt_rois[:, :4]).astype(np.float32, copy=False)
Exemplo n.º 5
0
def _compute_targets(ex_rois, gt_rois):
  """Compute bounding-box regression targets for an image."""

  assert ex_rois.shape[0] == gt_rois.shape[0]
  assert ex_rois.shape[1] == 4
  assert gt_rois.shape[1] == 5

  return bbox_transform(ex_rois, gt_rois[:, :4]).astype(np.float32, copy=False)
def _compute_targets(ex_rois, gt_rois):
    """Compute bounding-box regression targets for an image."""

    assert ex_rois.shape[0] == gt_rois.shape[0]
    assert ex_rois.shape[1] == 4
    assert gt_rois.shape[1] == 5

    return bbox_transform(
        torch.from_numpy(ex_rois), torch.from_numpy(gt_rois[:, :4])).numpy()
def _compute_targets(ex_rois,gt_rois,labels):
    # 计算图像的边界框回归目标
    assert ex_rois.shape[0] == gt_rois.shape[0]
    assert ex_rois.shape[1] == 4
    assert gt_rois.shape[1] == 4

    targets = bbox_transform(ex_rois,gt_rois)
    if cfg.TRAIN.BBOX_NORMALIZE_TARGETS_PRECOMPUTED:
        targets = ((targets-np.array(cfg.TRAIN.BBOX_NORMALIZE_MEANS))/np.array(cfg.TRAIN.BBOX_NORMALIZE_STDS))
    return np.hstack((labels[:,np.newaxis],targets)).astype(np.float32,copy=False)
Exemplo n.º 8
0
def _compute_targets(ex_rois, gt_rois):
    """Compute bounding-box regression targets for an image."""

    assert ex_rois.shape[0] == gt_rois.shape[0]
    assert ex_rois.shape[1] == 4
    assert gt_rois.shape[1] == 5

    targets = bbox_transform(ex_rois, gt_rois)

    return targets
def _compute_targets(ex_rois, gt_rois):
  """Compute bounding-box regression targets for an image."""
  ## 要求anchor与对应匹配最好GT个数相同
  assert ex_rois.shape[0] == gt_rois.shape[0]
  ## 要有anchor左上角与右下角坐标,有4个元素
  assert ex_rois.shape[1] == 4
  ## GT有标签位,所以为5个
  assert gt_rois.shape[1] == 5
  ## 返回一个用于anchor回归成target的包含每个anchor回归值(dx、dy、dw、dh)的array
  return bbox_transform(ex_rois, gt_rois[:, :4]).astype(np.float32, copy=False)
Exemplo n.º 10
0
def _compute_targets(ex_rois, gt_rois):
    """Compute bounding-box regression targets for an image."""

    assert ex_rois.shape[0] == gt_rois.shape[0]
    assert ex_rois.shape[1] == 4
    assert gt_rois.shape[1] == 5

    targets = bbox_transform(ex_rois, gt_rois)

    return targets
Exemplo n.º 11
0
def _compute_targets(rois, overlaps, labels):
    """Compute bounding-box regression targets for an image."""

    # We are sampling relations from fg rois, hence each
    # fg box must be assigned to an gt box
    assert(cfg.TRAIN.FG_THRESH >= cfg.TRAIN.BBOX_THRESH)

    # Indices of ground-truth ROIs
    gt_inds = np.where(overlaps == 1)[0]

    if len(gt_inds) == 0:
        # Bail if the image has no ground-truth ROIs
        return np.zeros((rois.shape[0], 5), dtype=np.float32)
    else:
        # sanity check
        assert(gt_inds[0] == 0)
        for i in range(1, len(gt_inds)):
            assert(gt_inds[i] - gt_inds[i-1] == 1)
    # Indices of examples for which we try to make predictions
    ex_inds = np.where(overlaps >= cfg.TRAIN.BBOX_THRESH)[0]

    # Get IoU overlap between each ex ROI and gt ROI
    ex_gt_overlaps = bbox_overlaps(
        np.ascontiguousarray(rois[ex_inds, :], dtype=np.float),
        np.ascontiguousarray(rois[gt_inds, :], dtype=np.float))

    # Find which gt ROI each ex ROI has max overlap with:
    # this will be the ex ROI's gt target
    gt_assignment = ex_gt_overlaps.argmax(axis=1)

    # guarding against the case where a gt box doesn't get assigned to itself
    gt_to_ex_inds = [np.where(ex_inds == g)[0][0] for g in gt_inds]
    for i, g in enumerate(gt_to_ex_inds):
        gt_assignment[g] = gt_inds[i]

    # assign rois
    gt_rois = rois[gt_inds[gt_assignment], :]
    ex_rois = rois[ex_inds, :]

    # record target assignments for all foreground rois
    fg_gt_ind_assignment = {}
    for i, e in enumerate(ex_inds):
        if overlaps[e] >= cfg.TRAIN.FG_THRESH:
            fg_gt_ind_assignment[e] = gt_inds[gt_assignment[i]]

    # check if all gt has been assigned
    for g in gt_inds:
        assert(g in list(fg_gt_ind_assignment.values()))

    targets = np.zeros((rois.shape[0], 5), dtype=np.float32)
    targets[ex_inds, 0] = labels[ex_inds]
    # transfer to center and log
    targets[ex_inds, 1:] = bbox_transform(ex_rois, gt_rois)
    return targets, fg_gt_ind_assignment
Exemplo n.º 12
0
def _compute_targets(ex_rois, gt_rois):
    """Compute bounding-box regression targets for an image."""

    assert ex_rois.shape[0] == gt_rois.shape[0]
    assert ex_rois.shape[1] == 4
    assert gt_rois.shape[1] == 5
    if isinstance(ex_rois, np.ndarray):
        ex_rois = torch.from_numpy(ex_rois)
    if isinstance(gt_rois, np.ndarray):
        gt_rois = torch.from_numpy(gt_rois)
    return bbox_transform(ex_rois, gt_rois[:, :4])
def _compute_targets(ex_rois, gt_rois):
    """Compute bounding-box regression targets for an image."""

    assert ex_rois.shape[0] == gt_rois.shape[0]
    assert ex_rois.shape[1] == 4
    assert gt_rois.shape[1] == 4

    targets = bbox_transform(ex_rois, gt_rois)
    if cfg.TRAIN.BBOX_NORMALIZE_TARGETS_PRECOMPUTED:
        # Optionally normalize targets by a precomputed mean and stdev
        targets = ((targets - np.array(cfg.TRAIN.BBOX_NORMALIZE_MEANS)) /
                   np.array(cfg.TRAIN.BBOX_NORMALIZE_STDS))
    return targets
Exemplo n.º 14
0
def _compute_targets(ex_rois, gt_rois, labels):
    """Compute bounding-box regression targets for an image."""
    # Inputs are tensor

    assert ex_rois.shape[0] == gt_rois.shape[0]
    assert ex_rois.shape[1] == 4
    assert gt_rois.shape[1] == 4

    targets = bbox_transform(ex_rois, gt_rois)
    if cfg.TRAIN.BBOX_NORMALIZE_TARGETS_PRECOMPUTED:
        # Optionally normalize targets by a precomputed mean and stdev
        targets = ((targets - targets.new(cfg.TRAIN.BBOX_NORMALIZE_MEANS)) /
                   targets.new(cfg.TRAIN.BBOX_NORMALIZE_STDS))
    return torch.cat([labels.unsqueeze(1), targets], 1)
def _compute_targets(ex_rois, gt_rois, labels):
    """Compute bounding-box regression targets for an image."""
    # Inputs are tensor

    assert ex_rois.shape[0] == gt_rois.shape[0]
    assert ex_rois.shape[1] == 4
    assert gt_rois.shape[1] == 4

    targets = bbox_transform(ex_rois, gt_rois)
    if cfg.TRAIN.BBOX_NORMALIZE_TARGETS_PRECOMPUTED:
        # Optionally normalize targets by a precomputed mean and stdev
        targets = ((targets - targets.new(cfg.TRAIN.BBOX_NORMALIZE_MEANS)) /
                   targets.new(cfg.TRAIN.BBOX_NORMALIZE_STDS))
    return torch.cat([labels.unsqueeze(1), targets], 1)
Exemplo n.º 16
0
def _compute_targets(ex_rois, gt_rois, labels):
  """Compute bounding-box regression targets for an image."""

  assert ex_rois.shape[0] == gt_rois.shape[0]
  assert ex_rois.shape[1] == 4
  assert gt_rois.shape[1] == 4

  targets = bbox_transform(ex_rois, gt_rois)
  if cfg.TRAIN.BBOX_NORMALIZE_TARGETS_PRECOMPUTED:
    # Optionally normalize targets by a precomputed mean and stdev
    targets = ((targets - np.array(cfg.TRAIN.BBOX_NORMALIZE_MEANS))
               / np.array(cfg.TRAIN.BBOX_NORMALIZE_STDS))
  return np.hstack(
    (labels[:, np.newaxis], targets)).astype(np.float32, copy=False)
Exemplo n.º 17
0
def _compute_targets(ex_rois, gt_rois, labels):
    """Compute bounding-box regression targets for an image."""

    assert ex_rois.shape[0] == gt_rois.shape[
        0]  #confirm that the ex_rois and the gt_rois are the same shape[0],so as to compute the results from proposals to gt boxes.
    assert ex_rois.shape[1] == 4
    assert gt_rois.shape[1] == 4

    targets = bbox_transform(ex_rois, gt_rois)
    if cfg.TRAIN.BBOX_NORMALIZE_TARGETS_PRECOMPUTED:
        # Optionally normalize targets by a precomputed mean and stdev
        targets = ((targets - np.array(cfg.TRAIN.BBOX_NORMALIZE_MEANS)) /
                   np.array(cfg.TRAIN.BBOX_NORMALIZE_STDS))
    return np.hstack((labels[:, np.newaxis], targets)).astype(np.float32,
                                                              copy=False)
def _compute_targets(ex_rois, gt_rois, labels):
  """Compute bounding-box regression targets for an image."""
  # Inputs are tensor

  assert ex_rois.shape[0] == gt_rois.shape[0]
  assert ex_rois.shape[1] == 4
  assert gt_rois.shape[1] == 4
  #  返回roi相对与其匹配的gt (dx,dy,dw,dh)四个回归值,shape(len(rois),4)
  targets = bbox_transform(ex_rois, gt_rois)
  if cfg.TRAIN.BBOX_NORMALIZE_TARGETS_PRECOMPUTED:
    #  是否归一化
    #  Optionally normalize targets by a precomputed mean and stdev
    targets = ((targets - targets.new(cfg.TRAIN.BBOX_NORMALIZE_MEANS))
               / targets.new(cfg.TRAIN.BBOX_NORMALIZE_STDS))
  # labels.unsqueeze(1) -> (128, 1)
  return torch.cat(
    [labels.unsqueeze(1), targets], 1)  # (128, 5) 类别和4个回归值
def _compute_targets(ex_rois, gt_rois, labels):
    """Compute bounding-box regression targets for an image."""
    assert ex_rois.shape[0] == gt_rois.shape[0]
    assert ex_rois.shape[1] == 4
    assert gt_rois.shape[1] == 4

    #targets:是anchor距离gt_box的 :[dx, dy,dw, dh]
    targets = bbox_transform(ex_rois, gt_rois)
    #cfg.TRAIN.BBOX_NORMALIZE_TARGETS_PRECOMPUTED=True
    if cfg.TRAIN.BBOX_NORMALIZE_TARGETS_PRECOMPUTED:
        # Optionally normalize targets by a precomputed mean and stdev
        '''
    下面这条语句的作用不懂???
    '''
        targets = ((targets - np.array(cfg.TRAIN.BBOX_NORMALIZE_MEANS)) /
                   np.array(cfg.TRAIN.BBOX_NORMALIZE_STDS))
    return np.hstack((labels[:, np.newaxis], targets)).astype(np.float32,
                                                              copy=False)
Exemplo n.º 20
0
    def forward(self, gt_boxes, gt_ellipses):
        batch_size = gt_boxes.size(0)

        labels = gt_boxes.new(batch_size, self._inds_inside.size(0)).fill_(-1)

        overlaps = bbox_overlaps_batch(self._anchors, gt_boxes)

        max_overlaps, argmax_overlaps = torch.max(overlaps, 2)
        gt_max_overlaps, _ = torch.max(overlaps, 1)

        # assign bg labels first so that positive labels can clobber them
        labels[max_overlaps < self._cfg['TRAIN.RPN_NEGATIVE_OVERLAP']] = 0

        # mark max overlap of 0, which are padded gt_boxes
        gt_max_overlaps[gt_max_overlaps == 0] = 1e-5
        # mark the max overlap of each ground truth
        keep = torch.sum(overlaps.eq(
            gt_max_overlaps.view(batch_size, 1, -1).expand_as(overlaps)), 2)
        if torch.sum(keep) > 0:
            labels[keep > 0] = 1

        labels[max_overlaps >= self._cfg['TRAIN.RPN_POSITIVE_OVERLAP']] = 1

        # subsample positive labels if we have too many
        num_fg = int(self._cfg['TRAIN.RPN_FG_FRACTION'] *
                     self._cfg['TRAIN.RPN_BATCHSIZE'])

        sum_fg = torch.sum((labels == 1).int(), 1)
        sum_bg = torch.sum((labels == 0).int(), 1)

        bbox_targets = gt_boxes.new(
            batch_size, self._inds_inside.size(0), 4).fill_(0)
        ellipse_targets = gt_ellipses.new(
            batch_size, self._inds_inside.size(0), 5).fill_(0)

        for i in range(batch_size):
            # subsample positive labels if we have too many
            if sum_fg[i] > num_fg:
                fg_inds = torch.nonzero(labels[i] == 1).view(-1)
                rand_num = torch.from_numpy(
                    np.random.permutation(fg_inds.size(0))
                ).type_as(gt_boxes).long()
                disable_inds = fg_inds[rand_num[:fg_inds.size(0)-num_fg]]
                labels[i][disable_inds] = -1

            num_bg = self._cfg['TRAIN.RPN_BATCHSIZE'] - \
                torch.sum((labels == 1).int(), 1)[i]

            # subsample negative labels if we have too many
            if sum_bg[i] > num_bg:
                bg_inds = torch.nonzero(labels[i] == 0).view(-1)
                rand_num = torch.from_numpy(
                    np.random.permutation(bg_inds.size(0))
                ).type_as(gt_boxes).long()
                disable_inds = bg_inds[rand_num[:bg_inds.size(0)-num_bg]]
                labels[i][disable_inds] = -1

            bbox_targets[i] = bbox_transform(
                self._anchors, gt_boxes[i][argmax_overlaps[i], :4])
            ellipse_targets[i] = ellipse_transform(
                self._anchors, gt_ellipses[i][argmax_overlaps[i], :8])

        # map up to original set of anchors
        labels = _unmap(
            labels, self._total_anchors, self._inds_inside, batch_size,
            fill=-1)
        bbox_targets = _unmap(
            bbox_targets, self._total_anchors, self._inds_inside, batch_size,
            fill=0)
        ellipse_targets = _unmap(
            ellipse_targets, self._total_anchors, self._inds_inside,
            batch_size, fill=0)

        labels = labels.view(
            batch_size, self._feat_height, self._feat_width, self._A, 1
        ).contiguous()
        bbox_targets = bbox_targets.view(
            batch_size, self._feat_height, self._feat_width, self._A, 4
        ).contiguous()
        ellipse_targets = ellipse_targets.view(
            batch_size, self._feat_height, self._feat_width, self._A, 5
        ).contiguous()

        return (labels, bbox_targets, ellipse_targets)
            sub_image = image[10*j:10*j+200,10*i:10*i+200,:]#[y:y+h,x:x+w]
            sub_image = cv2.resize(sub_image,(32,32))
            sub_image = sub_image[np.newaxis,:,:,:]
            area = np.array([10*i,10*j,10*i+200,10*j+200])#[x,y]
            area = area[np.newaxis,:]
            # print(area)
            # print(sub_image.shape)
            image_batch.append(sub_image)
            image_area.append(area)
    image_batch = np.concatenate(image_batch,axis=0)
    anchors = np.concatenate(image_area,axis=0)
    # print(anchors.shape)
    print(image_batch.shape)
    print(image_batch.dtype)

    targets = bbox_transform(anchors, label)
    # print('11111111111')
    # print(targets,targets.shape,targets.dtype)
    print(targets.shape)
    # print(targets)
    overlaps = bbox_overlaps(
        np.ascontiguousarray(anchors, dtype=np.float),
        np.ascontiguousarray(label_sub, dtype=np.float))
    # print(overlaps)
    
    n = np.where(overlaps[:,0] > 0.7)
    print(n)
    face_label_1 = np.ones([231,1])
    face_label_2 = np.zeros([231,1])
    face_label_2[n,0]=1
    face_label_1[n,0]=0