Exemplo n.º 1
0
#Utility
β = 1
r_threshold = 60
u = ut.LinearPlateauUtility(β, r_threshold)

Rf = 0

# In[6]:

print(ns)

# In[9]:

# True market
R_true = NormalDistribution(8, 10)
X_true = [1 / np.sqrt(2) * StudentTDistribution(ν=4) for _ in range(p)]
M_true = synth.GaussianMarket(X_true, R_true)

# Discretized market
X, R = M_true.sample(n_true)
M = synth.MarketDiscreteDistribution(X, R)

# In[10]:

# Real q∗ value computation
p_star = pr.Problem(X, R, λ=0, u=u)
p_star.solve()
q_star = p_star.q

# In[11]:
Exemplo n.º 2
0
from model.distrs import E, Var, Std
import model.synth_data as synth
import model.utility as ut
import model.problem as pr

from helper.state import saver, loader
from helper.plotting import plt

l = AttrDict()

l.p = 25
l.n_true = 50000

# Continuous market distribution
R_true = NormalDistribution(8, 10)
X_true = [StudentTDistribution(ν=4)
          for _ in range(l.p)]  # EXᵢ = 0, Var(Xᵢ) = 1
l.M_true = synth.GaussianMarket(X_true,
                                R_true)  # constant corr(Xᵢ,R) = 1/p - ε

# Discretized sampled distribution in order to have real q⋆
X, R = l.M_true.sample(l.n_true)
l.M = synth.MarketDiscreteDistribution(X, R)

l.n_experiments = 100
l.λ = 3
l.δ = 0.2
l.ns = np.arange(25, 2025, 25)
l.Rf = 0

β = 1
Exemplo n.º 3
0
from model.distrs import E,Var,Std
import model.synth_data as synth
import model.utility as ut
import model.problem as pr

from helper.state import saver,loader
from helper.plotting import plt

l = AttrDict()

l.p = 25
l.n_true = 50000

# Continuous market distribution
R_true = NormalDistribution(8,10)
X_true = [StudentTDistribution(ν=4) for _ in range(l.p)] # EXᵢ = 0, Var(Xᵢ) = 1
l.M_true = synth.GaussianMarket(X_true,R_true)           # constant corr(Xᵢ,R) = 1/p - ε

# Discretized sampled distribution in order to have real q⋆
X,R = l.M_true.sample(l.n_true)
l.M = synth.MarketDiscreteDistribution(X,R)

l.n_experiments = 100
l.λ = 3
l.δ = 0.2
l.ns = np.arange(25,2025,25)
l.Rf = 0

β = 1
r_threshold = 60
l.u = ut.LinearPlateauUtility(β,r_threshold)