def populate_map_with_edges(self): for from_edge in self.edges: from_node_sequence = from_edge.get_start() vertex = self.nodes_map[from_node_sequence] has = has = self.has_in_list(from_edge) if not has: self.node_to_edges[vertex.get_sequence()].append(from_edge) residual_edge = Edge(from_edge.get_end(), from_edge.get_start(), 0) self.residual_network[from_edge.get_end()].append(residual_edge) if not from_edge.get_start() in self.floyd_warshall_map: self.floyd_warshall_map[from_edge.get_start()] = {} self.floyd_warshall_map[from_edge.get_start()][ from_edge.get_end()] = from_edge.get_weight() if not self.is_directed: to_edge = Edge(from_edge.get_end(), from_edge.get_start(), from_edge.get_weight()) has = self.has_in_list(to_edge) if not has: self.node_to_edges[to_edge.get_start()].append(to_edge) #TODO fill map when not directed for node in self.get_nodes(): if not node.get_sequence() in self.floyd_warshall_map: self.floyd_warshall_map[node.get_sequence()] = {}
def add_lane(lane_id, source_location_number, destination_location_number): lane_1_edge = Edge(lane_id, nodes_vertex_list[source_location_number], nodes_vertex_list[destination_location_number], 1) edges_vertex_list.append(lane_1_edge) lane_2_edge = Edge(lane_id, nodes_vertex_list[destination_location_number], nodes_vertex_list[source_location_number], 1) edges_vertex_list.append(lane_2_edge)
def add_lane(self, lane_id, source_loc_no, dest_loc_no): lane1 = Edge(lane_id, self.nodes_list[source_loc_no], self.nodes_list[dest_loc_no], 1) self.edges_list.append(lane1) lane2 = Edge(lane_id, self.nodes_list[dest_loc_no], self.nodes_list[source_loc_no], 1) self.edges_list.append(lane2)
def get_common_genes(disease_pairs, networks, writing_files): new_networks = [] for index, disease_pair in enumerate(disease_pairs): network = networks[index] d1_genes, d2_genes = get_genes(disease_pair) common_genes = d1_genes.intersection(d2_genes) d1 = Disease([disease_pair[0]], []) network.add_node(d1) d2 = Disease([disease_pair[1]], []) network.add_node(d2) for g_id in common_genes: gene = Gene([g_id], []) network.add_node(gene) network.add_edge(Edge(gene, d1, 'ASSOCIATES_WITH', {})) network.add_edge(Edge(gene, d2, 'ASSOCIATES_WITH', {})) if len(common_genes) > 0 and writing_files: temp_id1 = disease_pair[0].replace(':', '-') temp_id2 = disease_pair[1].replace(':', '-') path = '../analysis/disease_pairs/' + temp_id1 + '_' + temp_id2 try: os.mkdir(path) except FileExistsError: pass with io.open(path + '/' + temp_id1 + '_' + temp_id2 + '_common_genes.tsv', 'w', encoding='utf-8', newline='') as common_genes_file: common_genes_file.write('#Common genes of ' + disease_pair[0] + ' and ' + disease_pair[1] + '\n') for gene in common_genes: common_genes_file.write(gene + '\n') new_networks.append(network) print('Done getting genes') return new_networks
def draw(self): glMatrixMode(GL_MODELVIEW) glPushMatrix() glMultMatrixf(self._identity_mat) glColor3f(self._color[0],self._color[1],self._color[2]) for edge in self._edges: Edge.draw_edge(Edge(self._vertices[edge[0]],self._vertices[edge[1]])) glPopMatrix()
def get_common_variants(disease_pairs, networks, writing_files): new_networks = [] for index, disease_pair in enumerate(disease_pairs): network = networks[index] d1 = Disease([disease_pair[0]], []) network.add_node(d1) d2 = Disease([disease_pair[1]], []) network.add_node(d2) common_variants = [] # each variant is an array query = """ MATCH (d1:Disease)--(v:Variant)--(d2:Disease) WHERE {d1_id} in d1.ids AND {d2_id} in d2.ids RETURN v.`_id` """ results = session.run(query, parameters={'d1_id': disease_pair[0], 'd2_id': disease_pair[1]}) for result in results: v_id = result['v.`_id`'] common_variants.append([v_id, 'disease associated']) variant = Variant([v_id], []) network.add_node(variant) network.add_edge(Edge(d1, variant, 'ASSOCIATES_WITH', {})) network.add_edge(Edge(d2, variant, 'ASSOCIATES_WITH', {})) # variants associated to common genes d1_genes, d2_genes = get_genes(disease_pair) common_genes_ids = d1_genes.intersection(d2_genes) for gene_id in common_genes_ids: query = """ MATCH (g:Gene)-[a]-(v:Variant) WHERE {g_id} in g.ids RETURN v.`_id`, type(a) """ results = session.run(query, parameters={'g_id': gene_id}) for result in results: v_id = result['v.`_id`'] type = result['type(a)'] # can be CODES or EQTL variant_pair = v_id + '-' + gene_id common_variants.append([variant_pair, 'gene associated']) variant = Variant([v_id], []) network.add_node(variant) gene = Gene([gene_id], []) network.add_node(gene) network.add_edge(Edge(gene, variant, type, {})) network.add_edge(Edge(gene, d1, 'ASSOCIATES_WITH', {})) network.add_edge(Edge(gene, d2, 'ASSOCIATES_WITH', {})) new_networks.append(network) if len(common_variants) > 0 and writing_files: temp_id1 = disease_pair[0].replace(':', '-') temp_id2 = disease_pair[1].replace(':', '-') path = '../analysis/disease_pairs/' + temp_id1 + '_' + temp_id2 try: os.mkdir(path) except FileExistsError: pass with io.open(path + '/' + temp_id1 + '_' + temp_id2 + '_common_variants.tsv', 'w', encoding='utf-8', newline='') as common_variants_file: common_variants_file.write( '#Common variants associated with ' + disease_pair[0] + ' and ' + disease_pair[1] + '\n') for variant in common_variants: common_variants_file.write(variant[0] + '\t' + variant[1] + '\n') print('Done getting variants') return new_networks
def populate_edges(edges_representation): edges = [] for representation in edges_representation: start = representation[0] end = representation[1] weight = representation[2] edge = Edge(start, end, weight) edges.append(edge) return edges
def get_transpose_graph(self): edges = [] for edge in self.edges: transposed_edge = Edge(edge.get_end(), edge.get_start(), edge.get_weight()) edges.append(transposed_edge) transposed_graph = Graph(self.root, self.nodes, edges, self.is_directed) return transposed_graph
def generate(filePath): number_of_cities, costs, reliabilities = readValueFromFile(filePath) city_list = alphabet_list[0:int(number_of_cities)] edge_list = list() row = 0 col = 1 for reliability, cost in zip(reliabilities, costs): edge_list.append( Edge(city_list[row], city_list[col], float(cost), float(reliability))) if (col == len(city_list) - 1): row = row + 1 col = row + 1 else: col = col + 1 return city_list, edge_list
def draw(self): glMatrixMode(GL_MODELVIEW) glPushMatrix() gluLookAt(-2, 2, -6, 0, 0, 0, 0, 1, 0) glMultMatrixf(self._identity_mat) color = 0 colors = [(1, 0, 0), (1, 1, 0), (0, 1, 1), (1, 0, 0), (1, 1, 0), (0, 1, 1)] for edge in self._edges: glColor3f(colors[color][0], colors[color][1], colors[color][2]) if color > 2: Edge.draw_dotted_edge( Edge(self._vertices[edge[0]], self._vertices[edge[1]])) else: Edge.draw_edge( Edge(self._vertices[edge[0]], self._vertices[edge[1]])) color += 1 glPopMatrix()
if row[0] in external_id_lookup: drug_ids.extend(external_id_lookup[row[0]]) drug = Drug(drug_ids, [row[1]]) network.add_node(drug) gene_ids = ['HGNC:%s' % row[2]] if row[4]: gene_ids.append(row[4]) gene = Gene(gene_ids, [row[3]]) network.add_node(gene) rel = { 'source': 'DrugBank', 'known_action': row[5] == 1, 'actions': row[6].split(',') if row[6] else [], 'simplified_action': row[7] } network.add_edge(Edge(drug, gene, 'TARGETS', rel)) for row in interactions_results: drug1 = Drug(['DrugBank:%s' % row[0]], [row[1]]) network.add_node(drug1) drug2 = Drug(['DrugBank:%s' % row[2]], [row[3]]) network.add_node(drug2) rel = { 'source': 'DrugBank', 'description': row[4] } network.add_edge(Edge(drug1, drug2, 'INTERACTS', rel)) adr_id_counter = 1 for row in snp_adrs_results: # drugbank_id, gene_symbol, rs_id, adverse_reaction, description, pubmed_id adr = AdverseDrugReaction(['GenCoNet:DrugBank_ADR_%s' % adr_id_counter], []) adr_id_counter += 1
def get_common_rnas(disease_pairs, networks, writing_files): new_networks = [] for index, disease_pair in enumerate(disease_pairs): network = networks[index] d1 = Disease([disease_pair[0]], []) network.add_node(d1) d2 = Disease([disease_pair[1]], []) network.add_node(d2) d1_genes_ids, d2_genes_ids = get_genes(disease_pair) # this differentiation is done to get the correct number of regulated, in this subgraph present genes d1_only_genes_ids = d1_genes_ids.difference(d2_genes_ids) d2_only_genes_ids = d2_genes_ids.difference(d1_genes_ids) common_genes_ids = d1_genes_ids.intersection(d2_genes_ids) common_rnas = {} #dict with the RNA name as key and the regulated genes as an array as value for gene_id in common_genes_ids: query = """ MATCH (g:Gene)-[:REGULATES]-(r:RNA) WHERE {gene_id} IN g.ids RETURN distinct(r.`_id`) """ results = session.run(query, parameters={'gene_id': gene_id}) for result in results: rna_id = result['(r.`_id`)'] if rna_id in common_rnas: gene_ids = common_rnas[rna_id] gene_ids.append(gene_id) common_rnas[rna_id] = gene_ids else: common_rnas[rna_id] = [gene_id] gene = Gene([gene_id], []) network.add_node(gene) rna = RNA([rna_id], []) network.add_node(rna) network.add_edge(Edge(rna, gene, 'REGULATES', {})) network.add_edge(Edge(gene, d1, 'ASSOCIATES_WITH', {})) network.add_edge(Edge(gene, d2, 'ASSOCIATES_WITH', {})) rnas_d1_only_genes = {} for gene_id in d1_only_genes_ids: query = """ MATCH (g:Gene)-[:REGULATES]-(r:RNA) WHERE {gene_id} IN g.ids RETURN distinct(r.`_id`) """ results = session.run(query, parameters={'gene_id': gene_id}) for result in results: rna_id = result['(r.`_id`)'] if rna_id in rnas_d1_only_genes: gene_ids = rnas_d1_only_genes[rna_id] gene_ids.append(gene_id) rnas_d1_only_genes[rna_id] = gene_ids else: rnas_d1_only_genes[rna_id] = [gene_id] rnas_d2_only_genes = {} for gene_id in d2_only_genes_ids: query = """ MATCH (g:Gene)-[:REGULATES]-(r:RNA) WHERE {gene_id} IN g.ids RETURN distinct(r.`_id`) """ results = session.run(query, parameters={'gene_id': gene_id}) for result in results: rna_id = result['(r.`_id`)'] if rna_id in rnas_d2_only_genes: gene_ids = rnas_d2_only_genes[rna_id] gene_ids.append(gene_id) rnas_d2_only_genes[rna_id] = gene_ids else: rnas_d2_only_genes[rna_id] = [gene_id] #common_rnas = {'A':1, 'B':1, 'D':1} #rnas_d1_only_genes = {'A':2, 'B':1, 'E':1} #rnas_d2_only_genes = {'A':2, 'C':1, 'E':1} for rna_id in rnas_d1_only_genes: if rna_id in common_rnas: # common_rnas have already been added to the network, here the number of regulated genes is updated common_rnas[rna_id] = common_rnas[rna_id] + rnas_d1_only_genes[rna_id] elif rna_id in rnas_d2_only_genes: # RNA regulates genes associated to d1 and genes associated to d2, RNA does not regulate a common gene common_rnas[rna_id] = rnas_d1_only_genes[rna_id] + rnas_d2_only_genes[rna_id] g1_ids = rnas_d1_only_genes[rna_id] g2_ids = rnas_d2_only_genes[rna_id] rna = RNA([rna_id], []) network.add_node(rna) for g_id in g1_ids: gene = Gene([g_id], []) network.add_node(gene) network.add_edge(Edge(gene, d1, 'ASSOCIATES_WITH', {})) network.add_edge(Edge(rna, gene, 'REGULATES', {})) for g_id in g2_ids: gene = Gene([g_id], []) network.add_node(gene) network.add_edge(Edge(gene, d2, 'ASSOCIATES_WITH', {})) network.add_edge(Edge(rna, gene, 'REGULATES', {})) del rnas_d2_only_genes[rna_id] for rna_id in rnas_d2_only_genes: if rna_id in common_rnas: # common_rnas have already been added to the network, here the number of regulated genes is updated common_rnas[rna_id] = common_rnas[rna_id] + rnas_d2_only_genes[rna_id] # for each RNA add an array of RNAs, which regulate this RNA. MRNAs are not included for rna_id in common_rnas: second_rnas = [] query = """MATCH (r:RNA)-[:REGULATES]-(n:RNA) WHERE {r_id} IN r.ids AND NOT n.label_id CONTAINS "MRNA" RETURN distinct(n.`_id`) """ results = session.run(query, parameters={'r_id': rna_id}) rna = RNA([rna_id], []) network.add_node(rna) for result in results: second_rna_id = result['(n.`_id`)'] second_rnas.append(second_rna_id) second_rna = RNA([second_rna_id], []) network.add_node(second_rna) network.add_edge(Edge(second_rna, rna, 'REGULATES', {})) # the value of common_rnas is now changed to an array where at the first position the array with the regulated # genes from this subgraph is stored and at the second position the array with RNAs regulating the RNA is stored common_rnas[rna_id] = [common_rnas[rna_id], second_rnas] new_networks.append(network) if len(common_rnas) > 0 and writing_files: temp_id1 = disease_pair[0].replace(':', '-') temp_id2 = disease_pair[1].replace(':', '-') path = '../analysis/disease_pairs/' + temp_id1 + '_' + temp_id2 try: os.mkdir(path) except FileExistsError: pass with io.open(path + '/' + temp_id1 + '_' + temp_id2 + '_common_rnas.tsv', 'w', encoding='utf-8', newline='') as common_rnas_file: common_rnas_file.write('#Common rnas of ' + disease_pair[0] + ' and ' + disease_pair[1] + '\tsorted by number of regulated genes\tRegulated genes\tRNAs regulating the RNA\n') for key, value in sorted(common_rnas.items(), key=lambda item: len(item[1][0]), reverse=True): # sort by the number of genes in this subgraph which are regulated by the RNA regulated_genes = str(value[0]) regulated_genes = regulated_genes.replace('[', '') regulated_genes = regulated_genes.replace(']', '') regulated_genes = regulated_genes.replace('\'', '') second_rnas = str(value[1]) second_rnas = second_rnas.replace('[', '') second_rnas = second_rnas.replace(']', '') second_rnas = second_rnas.replace('\'', '') common_rnas_file.write(key + '\t' + str(len(value[0])) + '\t' + regulated_genes + '\t' + second_rnas + '\n') print('Done getting RNAs') return new_networks
def get_common_drugs(disease_pairs, networks, writing_files): new_networks = [] for index, disease_pair in enumerate(disease_pairs): network = networks[index] d1 = Disease([disease_pair[0]], []) network.add_node(d1) d2 = Disease([disease_pair[1]], []) network.add_node(d2) # the drug INDICATES, CONTRAINDICATES or INDUCES both diseases common_drugs = set() query = """ MATCH (d1:Disease)-[a]-(n:Drug)--(d2:Disease) WHERE {d1_id} IN d1.ids AND {d2_id} IN d2.ids RETURN distinct(type(a)), n.`_id` """ results = session.run(query, parameters={'d1_id': disease_pair[0], 'd2_id': disease_pair[1]}) for result in results: drug_id = result['n.`_id`'] type = result['(type(a))'] common_drugs.add(drug_id) drug = Drug([drug_id], []) network.add_node(drug) network.add_edge(Edge(drug, d1, type, {})) query = """ MATCH (d1:Disease)--(n:Drug)-[a]-(d2:Disease) WHERE {d1_id} IN d1.ids AND {d2_id} IN d2.ids RETURN distinct(type(a)), n.`_id` """ results = session.run(query, parameters={'d1_id': disease_pair[0], 'd2_id': disease_pair[1]}) for result in results: drug_id = result['n.`_id`'] type = result['(type(a))'] common_drugs.add(drug_id) drug = Drug([drug_id], []) network.add_node(drug) network.add_edge(Edge(drug, d2, type, {})) # the drug targets a gene of one disease and is associated to the other disease query = """ MATCH (d1:Disease)-[a]-(n:Drug)-[:TARGETS]-(g:Gene)-[:ASSOCIATES_WITH]-(d2:Disease) WHERE {d1_id} IN d1.ids AND {d2_id} IN d2.ids RETURN distinct(type(a)), n.`_id`, g.`_id` """ results = session.run(query, parameters={'d1_id': disease_pair[0], 'd2_id': disease_pair[1]}) for result in results: drug_id = result['n.`_id`'] type = result['(type(a))'] common_drugs.add(drug_id) drug = Drug([drug_id], []) network.add_node(drug) network.add_edge(Edge(drug, d1, type, {})) gene_id = result['g.`_id`'] gene = Gene([gene_id], []) network.add_node(gene) network.add_edge(Edge(drug, gene, 'TARGETS', {'actions': []})) network.add_edge(Edge(gene, d2, 'ASSOCIATES_WITH', {})) query = """ MATCH (d2:Disease)-[a]-(n:Drug)-[:TARGETS]-(g:Gene)-[:ASSOCIATES_WITH]-(d1:Disease) WHERE {d1_id} IN d1.ids AND {d2_id} IN d2.ids RETURN distinct(type(a)), n.`_id`, g.`_id` """ results = session.run(query, parameters={'d1_id': disease_pair[0], 'd2_id': disease_pair[1]}) for result in results: drug_id = result['n.`_id`'] type = result['(type(a))'] common_drugs.add(drug_id) drug = Drug([drug_id], []) network.add_node(drug) network.add_edge(Edge(drug, d2, type, {})) gene_id = result['g.`_id`'] gene = Gene([gene_id], []) network.add_node(gene) network.add_edge(Edge(drug, gene, 'TARGETS', {'actions': []})) network.add_edge(Edge(gene, d1, 'ASSOCIATES_WITH', {})) # the drug targets one gene which is associated to both diseases or the drug targets two different genes # where each gene is associated to one of the diseases query = """ MATCH (d1:Disease)-[:ASSOCIATES_WITH]-(g1:Gene)-[:TARGETS]-(n:Drug)-[:TARGETS]-(g2:Gene)- [:ASSOCIATES_WITH]-(d2:Disease) WHERE {d1_id} IN d1.ids AND {d2_id} IN d2.ids RETURN n.`_id`, g1.`_id`, g2.`_id` """ results = session.run(query, parameters={'d1_id': disease_pair[0], 'd2_id': disease_pair[1]}) for result in results: drug_id = result['n.`_id`'] common_drugs.add(drug_id) g1_id = result['g1.`_id`'] g2_id = result['g2.`_id`'] g1 = Gene([g1_id], []) network.add_node(g1) network.add_edge(Edge(g1, d1, 'ASSOCIATES_WITH', {})) drug = Drug([drug_id], []) network.add_node(drug) network.add_edge(Edge(drug, g1, 'TARGETS', {'actions': []})) g2 = Gene([g2_id], []) network.add_node(g2) network.add_edge(Edge(drug, g2, 'TARGETS', {'actions': []})) network.add_edge(Edge(g2, d2, 'ASSOCIATES_WITH', {})) new_networks.append(network) if len(common_drugs) > 0 and writing_files: temp_id1 = disease_pair[0].replace(':', '-') temp_id2 = disease_pair[1].replace(':', '-') path = '../analysis/disease_pairs/' + temp_id1 + '_' + temp_id2 try: os.mkdir(path) except FileExistsError: pass with io.open(path + '/' + temp_id1 + '_' + temp_id2 + '_common_drugs.tsv', 'w', encoding='utf-8', newline='') as common_drugs_file: common_drugs_file.write('#Common drugs of ' + disease_pair[0] + ' and ' + disease_pair[1] + '\n') for drug in common_drugs: common_drugs_file.write(drug + '\n') print('Done getting drugs') return new_networks
#!/usr/bin/env python3 import io import csv from model.network import Network from model.drug import Drug from model.disease import Disease from model.edge import Edge network = Network() with io.open('../data/PubMed/drug_disease.csv', 'r', encoding='utf-8', newline='') as f: reader = csv.reader(f, delimiter=',', quotechar='"') next(reader, None) for row in reader: drug = Drug(['DrugBank:%s' % row[1]], [row[0]]) disease = Disease([row[4]], [row[3]]) network.add_node(drug) network.add_node(disease) network.add_edge( Edge(drug, disease, row[2], { 'source': 'PubMed', 'pmid': row[5] })) network.save('../data/PubMed/graph.json')
to_namespace = association.find('to_namespace').text to_id = association.find('to_code').text to_name = association.find('to_name').text if from_namespace != 'RxNorm' or to_namespace != 'MeSH': continue if association_type not in ['induces', 'CI_with', 'may_treat']: continue drug_id = 'RxNorm:%s' % from_id if from_id not in added_rxnorm_drugs: drug = Drug([drug_id], [from_name]) network.add_node(drug) added_rxnorm_drugs.add(from_id) else: drug = network.get_node_by_id(drug_id, 'Drug') disease_id = 'MeSH:%s' % to_id if to_id not in added_mesh_diseases: disease = Disease([disease_id], [to_name]) network.add_node(disease) added_mesh_diseases.add(to_id) else: disease = network.get_node_by_id(disease_id, 'Disease') rel = {'source': 'MEDRT'} if association_type == 'induces': network.add_edge(Edge(drug, disease, 'INDUCES', rel)) elif association_type == 'CI_with': network.add_edge(Edge(drug, disease, 'CONTRAINDICATES', rel)) elif association_type == 'may_treat': network.add_edge(Edge(drug, disease, 'INDICATES', rel)) network.save('../data/MED-RT/graph.json')
pmid = row[8].split(':') pmid = pmid[1] source_database = row[12] source_database = source_database.replace('\"', '') if (mirna_rnacentral_id + '$' + gene_hgnc_id) in edge_source_target_lookup: reg_edges = network.get_edges_from_to( mirna, gene, 'REGULATES') for reg_edge in reg_edges: if reg_edge.attributes['source'] == ( 'EBI-GOA-miRNA, ' + source_database): pmid = reg_edge.attributes['pmid'] + ', ' + pmid network.delete_edge(reg_edge) e = Edge( mirna, gene, 'REGULATES', { 'source': 'EBI-GOA-miRNA, ' + source_database, 'pmid': pmid }) network.add_edge(e) edge_source_target_lookup.append( mirna_rnacentral_id + '$' + gene_hgnc_id) else: e = Edge( mirna, gene, 'REGULATES', { 'source': 'EBI-GOA-miRNA, ' + source_database, 'pmid': pmid }) network.add_edge(e) edge_source_target_lookup.append(mirna_rnacentral_id + '$' + gene_hgnc_id) # GOs
network = Network() drug_lookup = {} with io.open(drug_file, 'r', encoding='utf-8', newline='') as f: reader = csv.reader(f, delimiter='\t', quotechar='"') for row in reader: drug_lookup[row[0].strip()] = row[1].strip() # 1: STITCH compound id (flat, see above) # 2: UMLS concept id as it was found on the label # 3: method of detection: NLP_indication / NLP_precondition / text_mention # 4: concept name # 5: MedDRA concept type (LLT = lowest level term, PT = preferred term; in a few cases the term is neither LLT nor PT) # 6: UMLS concept id for MedDRA term # 7: MedDRA concept name # All side effects found on the labels are given as LLT. Additionally, the PT is shown. There is at least one # PT for every LLT, but sometimes the PT is the same as the LLT. with io.open(file, 'r', encoding='utf-8', newline='') as f: reader = csv.reader(f, delimiter='\t', quotechar='"') for row in reader: pubchem_id = row[0][4::].lstrip('0') drug = Drug(['PubChem:CID%s' % pubchem_id], [drug_lookup[row[0]]] if row[0] in drug_lookup else []) network.add_node(drug) disease = Disease(['UMLS:%s' % row[1], 'UMLS:%s' % row[5]], [row[3], row[6]]) network.add_node(disease) network.add_edge(Edge(drug, disease, 'INDICATES', {'source': 'SIDER'})) network.save('../data/SIDER/graph.json')
network = Network() with io.open(file, 'r', encoding='utf-8', newline='') as f: reader = csv.reader(f, delimiter='\t', quotechar='"') next(reader, None) for row in reader: row = [x.strip() for x in row] if not row[0] or not row[7] or not row[8]: continue gene_ids = {'HGNC:%s' % row[0]} if row[2]: gene_ids.add('Entrez:%s' % row[2]) gene = Gene(gene_ids, []) network.add_node(gene) drug_name = row[7].replace('(%s)' % row[8], '').replace(row[8], '').strip() drug = Drug(['ChEMBL:%s' % row[8]], [drug_name] if drug_name else []) network.add_node(drug) rel = { 'source': 'DGIdb,%s' % row[3], 'actions': [row[4]], } if row[9]: pubmed_ids = ','.join( ['PMID:%s' % x for x in row[9].strip().split(',')]) rel['source'] += ',%s' % pubmed_ids network.add_edge(Edge(drug, gene, 'TARGETS', rel)) network.save('../data/DGIdb/graph.json')
id_node = owl_class.find(obo_in_owl_ns + 'id') obo_ns_node = owl_class.find(obo_in_owl_ns + 'hasOBONamespace') label_node = owl_class.find(rdfs_ns + 'label') if id_node is not None and obo_ns_node is not None: go_class = GOClass([id_node.text], [label_node.text]) network.add_node(go_class) go_class_ns_lookup[id_node.text] = obo_ns_node.text for alternative_id_node in owl_class.findall(obo_in_owl_ns + 'hasAlternativeId'): go_class_redirects[alternative_id_node.text] = id_node.text with io.open(annotations_file, 'r', encoding='utf-8', newline='') as f: reader = csv.reader(f, delimiter='\t', quotechar='"') for row in reader: if not row[0][0].startswith('!') and row[12] == 'taxon:9606': gene = Gene(['UniProtKB:%s' % row[1], 'HGNC:%s' % row[2]], []) network.add_node(gene) if row[4] not in go_class_ns_lookup: # print('[WARN] GO id %s is obsolete, redirecting to %s' % (row[4], go_class_redirects[row[4]])) row[4] = go_class_redirects[row[4]] label = go_class_ns_lookup[row[4]].upper() if label == 'MOLECULAR_FUNCTION': label = 'HAS_' + label elif label == 'BIOLOGICAL_PROCESS': label = 'BELONGS_TO_' + label elif label == 'CELLULAR_COMPONENT': label = 'IN_' + label e = Edge(gene, network.get_node_by_id(row[4], 'GOClass'), label, {'source': 'GO,%s' % row[5]}) network.add_edge(e) network.save('../data/GO/graph.json')
# 30 OR or BETA # 31 95% CI (TEXT) # 32 PLATFORM [SNPS PASSING QC] # 33 CNV loc_pattern = re.compile(r'LOC[0-9]+') with io.open(file, 'r', encoding='utf-8', newline='') as f: reader = csv.reader(f, delimiter='\t', quotechar='"') next(reader, None) for row in reader: if not row[14]: continue gene_ids = row[14].replace(' x ', ', ').replace(' - ', ', ').split(', ') print(row[14]) print('\t', gene_ids) for gene_id in gene_ids: if loc_pattern.fullmatch(gene_id) is not None: continue gene = Gene(['HGNC:%s' % gene_id], []) network.add_node(gene) for variant_id in {x.strip() for x in row[21].split(';')}: variant = Variant(['dbSNP:%s' % variant_id], []) network.add_node(variant) network.add_edge( Edge(gene, variant, 'CODES', { 'source': 'GWASCatalog', 'pmid': row[1] })) network.save('../data/GWAS-Catalog/graph.json')
def load_from_dict(self, source: {}): py_class_map = {} for label in source['node_types']: if ';' not in label: module_name = source['node_types'][label] module = __import__(module_name) for package in module_name.split('.')[1:]: module = getattr(module, package) py_class_map[label] = getattr(module, label) for node in source['nodes']: node_instance: Node if ';' not in node['_label']: class_ = py_class_map[node['_label']] node_instance = class_(node['ids'], node['names']) elif 'RNA' in node['_label']: label = node['_label'] if 'CircRNA' in label: node_instance = CircRNA(node['ids'], node['names']) elif 'ERNA' in label: node_instance = ERNA(node['ids'], node['names']) elif 'LncRNA' in label: node_instance = LncRNA(node['ids'], node['names']) elif 'MiRNA' in label: node_instance = MiRNA(node['ids'], node['names']) elif 'MRNA' in label: node_instance = MRNA(node['ids'], node['names']) elif 'NcRNA' in label: node_instance = NcRNA(node['ids'], node['names']) elif 'PiRNA' in label: node_instance = PiRNA(node['ids'], node['names']) elif 'Pseudogene' in label: node_instance = Pseudogene(node['ids'], node['names']) elif 'Ribozyme' in label: node_instance = Ribozyme(node['ids'], node['names']) elif 'RRNA' in label: node_instance = RRNA(node['ids'], node['names']) elif 'ScaRNA' in label: node_instance = ScaRNA(node['ids'], node['names']) elif 'ScRNA' in label: node_instance = ScRNA(node['ids'], node['names']) elif 'SnoRNA' in label: node_instance = SnoRNA(node['ids'], node['names']) elif 'SnRNA' in label: node_instance = SnRNA(node['ids'], node['names']) else: node_instance = RNA(node['ids'], node['names']) else: print('[Err ] Failed to load node with multiple labels', node) continue for key in node.keys(): if key not in ['_id', 'ids', 'names', '_label']: node_instance.attributes[key] = node[key] self.add_node(node_instance) for edge in source['edges']: params = dict(edge) del params['_source_id'] del params['_source_label'] del params['_target_id'] del params['_target_label'] del params['_label'] source_node = self.get_node_by_id(edge['_source_id'], edge['_source_label']) if source_node is None: print( 'Failed to load edge: could not find source node with label %s and id %s' % (edge['_source_label'], edge['_source_id'])) target_node = self.get_node_by_id(edge['_target_id'], edge['_target_label']) if target_node is None: print( 'Failed to load edge: could not find target node with label %s and id %s' % (edge['_target_label'], edge['_target_id'])) self.add_edge( Edge(source_node, target_node, edge['_label'], params))
drug_names.append(prop[1]) elif property_defs[prop[0]] == 'UMLS_CUI': drug_ids.append('UMLS:%s' % prop[1]) elif property_defs[prop[0]] == 'Synonym': drug_names.append(prop[1]) drug_names = [ x.replace('[VA Product]', '').strip() for x in drug_names ] drug = Drug(drug_ids, drug_names) network.add_node(drug) for role in concept['roles']: role_name = role_defs[role[0]] rel = {'source': 'NDFRT'} if role_name == 'induces {NDFRT}': network.add_edge( Edge(drug, ('NDFRT:%s' % role[1], 'Disease'), 'INDUCES', rel)) elif role_name == 'CI_with {NDFRT}': network.add_edge( Edge(drug, ('NDFRT:%s' % role[1], 'Disease'), 'CONTRAINDICATES', rel)) elif role_name == 'may_treat {NDFRT}': network.add_edge( Edge(drug, ('NDFRT:%s' % role[1], 'Disease'), 'INDICATES', rel)) elif concept['kind'] == kind_defs_rev['DISEASE_KIND']: disease_ids = ['NDFRT:%s' % concept['code']] disease_names = [concept['name']] for prop in concept['properties']: if property_defs[prop[0]] == 'SNOMED_CID': disease_ids.append('SnoMedCT:%s' % prop[1]) elif property_defs[prop[0]] == 'UMLS_CUI':
def get_given_drugs_related_info(disease_pairs, drugs): # first disease pair with first drug array all_networks = [] # contains an array for each disease pair for index, disease_pair in enumerate(disease_pairs): networks_per_drug = [] # contains a network for each drug pair_drugs_ids = drugs[index] temp_id1 = disease_pair[0].replace(':', '-') temp_id2 = disease_pair[1].replace(':', '-') path = '../analysis/disease_pairs/' + temp_id1 + '_' + temp_id2 for drug_id in pair_drugs_ids: try: os.mkdir(path) except FileExistsError: pass network = Network() d1 = Disease([disease_pair[0]], []) network.add_node(d1) d2 = Disease([disease_pair[1]], []) network.add_node(d2) drug = Drug([drug_id], []) network.add_node(drug) temp_drug_id = drug_id.replace(':', '-') with io.open(path + '/' + temp_id1 + '_' + temp_id2 + '_' + temp_drug_id + '_results.txt', 'w', encoding='utf-8', newline='') as results_file: results_file.write('In this file all information about the connection between ' + disease_pair[0] + ' and ' + disease_pair[1] + ' and the drug ' + drug_id + ' is summarized:\n') # the drug INDICATES, CONTRAINDICATES or INDUCES the disease query = """ MATCH (d:Disease)-[a]-(n:Drug) WHERE {d1_id} IN d.ids AND {n_id} in n.ids RETURN distinct(type(a)) """ d1_results = session.run(query, parameters={'d1_id': disease_pair[0], 'n_id': drug_id}) for result in d1_results: results_file.write(drug_id + ' ' + result['(type(a))'] + ' ' + disease_pair[0] + '\n') network.add_edge(Edge(drug, d1, result['(type(a))'], {})) query = """ MATCH (d:Disease)-[a]-(n:Drug) WHERE {d2_id} IN d.ids AND {n_id} in n.ids RETURN distinct(type(a)) """ d2_results = session.run(query, parameters={'d2_id': disease_pair[1], 'n_id': drug_id}) for result in d2_results: results_file.write(drug_id + ' ' + result['(type(a))'] + ' ' + disease_pair[1] + '\n') network.add_edge(Edge(drug, d2, result['(type(a))'], {})) # the drug targets a gene which is associated to the disease d1_genes = set() query = """ MATCH (n:Drug)-[:TARGETS]-(g:Gene)-[:ASSOCIATES_WITH]-(d:Disease) WHERE {d1_id} IN d.ids AND {n_id} in n.ids RETURN g.`_id` """ d1_results = session.run(query, parameters={'d1_id': disease_pair[0], 'n_id': drug_id}) for gene in d1_results: d1_genes.add(gene['g.`_id`']) g = Gene([gene['g.`_id`']], []) network.add_node(g) network.add_edge(Edge(drug, g, 'TARGETS', {'actions': []})) #TODO network.add_edge(Edge(g, d1, 'ASSOCIATES_WITH', {})) d2_genes = set() query = """ MATCH (n:Drug)-[:TARGETS]-(g:Gene)-[:ASSOCIATES_WITH]-(d:Disease) WHERE {d2_id} IN d.ids AND {n_id} in n.ids RETURN g.`_id` """ d2_results = session.run(query, parameters={'d2_id': disease_pair[1], 'n_id': drug_id}) for gene in d2_results: d2_genes.add(gene['g.`_id`']) g = Gene([gene['g.`_id`']], []) network.add_node(g) network.add_edge(Edge(drug, g, 'TARGETS', {'actions': []})) #TODO network.add_edge(Edge(g, d2, 'ASSOCIATES_WITH', {})) common_drug_genes = d1_genes.intersection(d2_genes) # genes associated to the drug and both diseases # relevant_genes are all genes associated to at least one disease and the drug, below the common genes # with the most disease associated references are added relevant_genes = d1_genes.union(d2_genes) if len(d1_genes) > 0: nbr = str(len(d1_genes)) d1_genes = str(d1_genes) d1_genes = d1_genes.replace('{', '') d1_genes = d1_genes.replace('}', '') d1_genes = d1_genes.replace('\'', '') results_file.write(drug_id + ' targets following ' + nbr + ' genes which are associated to ' + disease_pair[0] + ': ' + d1_genes + '\n') if len(d2_genes) > 0: nbr = str(len(d2_genes)) d2_genes = str(d2_genes) d2_genes = d2_genes.replace('{', '') d2_genes = d2_genes.replace('}', '') d2_genes = d2_genes.replace('\'', '') results_file.write(drug_id + ' targets following ' + nbr + ' genes which are associated to ' + disease_pair[1] + ': ' + d2_genes + '\n') if len(common_drug_genes) > 0: nbr = str(len(common_drug_genes)) cdgs = str(common_drug_genes) cdgs = cdgs.replace('{', '') cdgs = cdgs.replace('}', '') cdgs = cdgs.replace('\'', '') results_file.write('The disease pair has ' + nbr + ' common genes which are targeted by the drug: ' + cdgs + '\n') # add the common genes with the most disease associated references # no given num_pmids is similar to num_pmids = 0 all_d1_genes, all_d2_genes = get_genes(disease_pair) all_common_genes = all_d1_genes.intersection(all_d2_genes) relevant_common_genes = [] # the genes with the most cited gene-disease association, threshold 10 if len(all_common_genes) > 0: results_file.write('The disease pair has ' + str(len(all_common_genes)) + ' common genes, not considering the connection to the drug.' ' Following genes have the most references regarding their connection to both diseases:\n') for gene in all_common_genes: query = """ MATCH (d1:Disease)-[a]-(g:Gene) WHERE {g_id} IN g.ids AND {d1_id} IN d1.ids RETURN a.num_pmids """ results = session.run(query, parameters={'g_id': gene, 'd1_id': disease_pair[0]}) num_pmids = 0 for result in results: # multiple edges to the same gene temp = result['a.num_pmids'] if temp is not None: num_pmids = num_pmids + temp query = """ MATCH (d2:Disease)-[a]-(g:Gene) WHERE {g_id} IN g.ids AND {d2_id} IN d2.ids RETURN a.num_pmids """ results = session.run(query, parameters={'g_id': gene, 'd2_id': disease_pair[1]}) for result in results: # multiple edges to the same gene temp = result['a.num_pmids'] if temp is not None: num_pmids = num_pmids + temp relevant_common_genes.append([gene, num_pmids]) # sort by number of pmids relevant_common_genes = sorted(relevant_common_genes, key=lambda item: item[1], reverse=True) relevant_common_genes = relevant_common_genes[:10] # threshold rcgs = str(relevant_common_genes) rcgs = rcgs[1:-1] rcgs = rcgs.replace('\'', '') results_file.write(rcgs + '\n') for g in relevant_common_genes: gene = Gene([g[0]], []) network.add_node(gene) network.add_edge(Edge(gene, d1, 'ASSOCIATES_WITH', {})) network.add_edge(Edge(gene, d2, 'ASSOCIATES_WITH', {})) relevant_genes.add(g[0]) # add the common disease associated variants with most references # no given num_pmids is similar to num_pmids = 0 disease_variants = {} query = """ MATCH (d1:Disease)-[a]-(v:Variant)--(d2:Disease) WHERE {d1_id} in d1.ids AND {d2_id} in d2.ids RETURN distinct(a.num_pmids), v.`_id` """ results = session.run(query, parameters={'d1_id': disease_pair[0], 'd2_id': disease_pair[1]}) for variant in results: num_pmids = variant['(a.num_pmids)'] if num_pmids is None: num_pmids = 0 var_id = variant['v.`_id`'] if var_id in disease_variants: temp = disease_variants[var_id] disease_variants[var_id] = temp + num_pmids else: disease_variants[var_id] = num_pmids query = """ MATCH (d2:Disease)-[a]-(v:Variant)--(d1:Disease) WHERE {d1_id} in d1.ids AND {d2_id} in d2.ids RETURN distinct(a.num_pmids), v.`_id` """ results = session.run(query, parameters={'d1_id': disease_pair[0], 'd2_id': disease_pair[1]}) for variant in results: num_pmids = variant['(a.num_pmids)'] if num_pmids is None: num_pmids = 0 var_id = variant['v.`_id`'] if var_id in disease_variants: temp = disease_variants[var_id] disease_variants[var_id] = temp + num_pmids else: disease_variants[var_id] = num_pmids dvs = '' i = 0 for key, value in sorted(disease_variants.items(), key=lambda item: item[1], reverse=True): if i < 9: # threshold num_pmids = disease_variants[key] variant = Variant([key], []) network.add_node(variant) network.add_edge(Edge(variant, d1, 'ASSOCIATES_WITH', {})) network.add_edge(Edge(variant, d2, 'ASSOCIATES_WITH', {})) dvs = dvs + key + ':' + str(num_pmids) + ' PMIDs, ' i += 1 dvs = dvs[:-2] # add the gene associated variants with smallest pvalues # if no pvalue is given, pvalue is set to 1 gene_variants = [] for gene in relevant_genes: query = """ MATCH (g:Gene)-[a]-(v:Variant) WHERE {g_id} in g.ids RETURN v.`_id`, a.pvalue, type(a) """ results = session.run(query, parameters={'g_id': gene}) for variant in results: pvalue = variant['a.pvalue'] if pvalue is None: pvalue = 1 else: pvalue = float(pvalue) gene_variants.append([variant['v.`_id`'] + '-' + gene, pvalue, variant['type(a)']]) gene_variants = sorted(gene_variants, key=lambda item: item[1]) gene_variants = gene_variants[:10] # threshold for v in gene_variants: temp = v[0].split('-') v_id = temp[0] g_id = temp[1] variant = Variant([v_id], []) network.add_node(variant) gene = Gene([g_id], []) network.add_node(gene) network.add_edge(Edge(gene, variant, v[2], {'pvalue': v[1]})) if len(gene_variants) > 0: gvs = str(gene_variants) gvs = gvs[1:-1] gvs = gvs.replace('\'', '') else: gvs = '' if len(disease_variants) > 0 or len(gene_variants) > 0: results_file.write('The disease pair has at least ' + str(i) + ' variants associated to both diseases: ' + dvs + ' and at least ' + str(len(gene_variants)) + ' gene associated variants: ' + gvs + '\n') # dict with RNA name as key and an array as value # first array position is the number of regulated genes, second position is an array with the gene names relevant_rnas = {} for gene in relevant_genes: query = """ MATCH (r:RNA)--(g:Gene) WHERE {g_id} in g.ids AND NOT r.label_id CONTAINS "MRNA" return r.`_id` """ results = session.run(query, parameters={'g_id': gene}) for result in results: key = result['r.`_id`'] if key in relevant_rnas: value = relevant_rnas[key] genes = value[1] if gene not in genes: genes.add(gene) relevant_rnas[key] = [value[0] + 1, genes] else: genes = set() genes.add(gene) relevant_rnas[key] = [1, genes] if len(relevant_rnas) > 0: i = 0 for key, value in sorted(relevant_rnas.items(), key=lambda item: item[1], reverse=True): # sort by the number of regulated genes if i > 9: # threshold break elif value[0] > 1: # only add and print RNAs which regulate more than one gene if i == 0: results_file.write('RNAs with the number and names of the genes they regulate: \n') rna_id = key for gene_id in value[1]: rna = RNA([rna_id], []) network.add_node(rna) gene = Gene([gene_id], []) network.add_node(gene) network.add_edge(Edge(rna, gene, 'REGULATES', {})) regulated_genes = str(value[1]) regulated_genes = regulated_genes[1:-1] regulated_genes = regulated_genes.replace('\'', '') results_file.write(rna_id + '\t' + str(value[0]) + '\t' + regulated_genes + '\n') i += 1 # append regulating RNAs to one RNA which regulates the most genes, MRNAs are not added for key, value in sorted(relevant_rnas.items(), key=lambda item: item[1], reverse=True): if value[0] > 1: most_relevant_rna = RNA([key], []) network.add_node(most_relevant_rna) query = """ MATCH (r:RNA)--(n:RNA) WHERE {r_id} in r.ids AND NOT n.label_id CONTAINS "MRNA" RETURN n.`_id`, labels(n) """ results = session.run(query, parameters={'r_id': key}) reg_rnas = '' for result in results: rna_id = result['n.`_id`'] types = result['labels(n)'] for type in types: if type != 'RNA': if type == 'CircRNA': rna = CircRNA([rna_id], []) if type == 'ERNA': rna = ERNA([rna_id], []) if type == 'LncRNA': rna = LncRNA([rna_id], []) if type == 'MiRNA': rna = MiRNA([rna_id], []) if type == 'NcRNA': rna = NcRNA([rna_id], []) if type == 'PiRNA': rna = PiRNA([rna_id], []) if type == 'Pseudogene': rna = Pseudogene([rna_id], []) if type == 'Ribozyme': rna = Ribozyme([rna_id], []) if type == 'RRNA': rna = RRNA([rna_id], []) if type == 'ScaRNA': rna = ScaRNA([rna_id], []) if type == 'ScRNA': rna = ScRNA([rna_id], []) if type == 'SnoRNA': rna = SnoRNA([rna_id], []) if type == 'SnRNA': rna = SnRNA([rna_id], []) network.add_node(rna) network.add_edge(Edge(rna, most_relevant_rna, 'REGULATES', {})) reg_rnas = reg_rnas + rna_id + ', ' reg_rnas = reg_rnas[:-2] results_file.write(key + ' is the RNA which regulates the most genes in this subgraph. It is regulated by ' + reg_rnas + '.\n') break json_file = path + '/' + temp_id1 + '_' + temp_id2 + '_' + temp_drug_id + '_graph.json' network.save(json_file) draw_drug_subgraph(json_file) networks_per_drug.append(network) all_networks.append(networks_per_drug) return all_networks
next(reader, None) for row in reader: if value_empty(row[1]) or value_empty(row[13]): continue variant = Variant(['dbSNP:%s' % row[1]], []) network.add_node(variant) for gene_id in row[13].split(','): gene = Gene(['HGNC:%s' % gene_id], []) network.add_node(gene) rel = { 'source': 'PMID:24013639', 'pvalue': row[0], 'snp_chr': row[2], 'cis_trans': row[7] } network.add_edge(Edge(gene, variant, 'EQTL', rel)) with io.open(file_trans, 'r', encoding='utf-8', newline='') as f: reader = csv.reader(f, delimiter='\t', quotechar='"') next(reader, None) for row in reader: if value_empty(row[1]) or value_empty(row[16]): continue variant = Variant(['dbSNP:%s' % row[1]], []) network.add_node(variant) for gene_id in row[16].split(','): gene = Gene(['HGNC:%s' % gene_id], []) network.add_node(gene) rel = { 'source': 'PMID:24013639', 'pvalue': row[0],
def getEdge(self, fr, to): index = self.edges.index(Edge(fr, to)) if index != -1: return self.edges[index] else: return None
network = Network() # 0 Location # 1 Phenotype # 2 Phenotype MIM number # 3 Inheritance # 4 Phenotype mapping key # 5 Gene/Locus # 6 Gene/Locus MIM number with io.open('../data/OMIM/filtered_associations.csv', 'r', encoding='utf-8', newline='') as f: reader = csv.reader(f, delimiter=',', quotechar='"') next(reader, None) for row in reader: disease = Disease(['OMIM:%s' % row[2]], []) network.add_node(disease) gene = Gene(['HGNC:%s' % row[5]], []) # , 'OMIM:%s' % row[6] network.add_node(gene) rel = { 'source': 'OMIM', 'location': row[0], 'phenotype': row[1], 'inheritance': row[2], 'phenotype_mapping_key': row[4] } network.add_edge(Edge(gene, disease, 'ASSOCIATES_WITH', rel)) network.save('../data/OMIM/graph.json')
reader = csv.reader(f, delimiter='\t', quotechar='"') next(reader, None) for row in reader: if row[3] == 'H**o sapiens' and row[6] == 'H**o sapiens' and float( row[7]) > 0.9: interactor_a_name = row[1] interactor_a_type = row[2] interactor_b_name = row[4] interactor_b_type = row[5] interactor_a = add_rna(interactor_a_name, interactor_a_type, node_lookup) interactor_b = add_rna(interactor_b_name, interactor_b_type, node_lookup) if interactor_a is not None and interactor_b is not None: if interactor_a_type == 'mRNA': gene = Gene([interactor_a.id], []) network.add_node(gene) e = Edge(gene, interactor_a, 'TRANSCRIBES', {}) network.add_edge(e) elif interactor_b_type == 'mRNA': gene = Gene([interactor_b.id], []) network.add_node(gene) e = Edge(gene, interactor_b, 'TRANSCRIBES', {}) network.add_edge(e) e = Edge(interactor_a, interactor_b, 'REGULATES', {'source': 'RNAInter'}) network.add_edge(e) network.save('../data/RNAInter/graph.json')
Button(SCREEN_SIZE[0] - 110, 230, 50, 8, 'test_image.png'), Button(SCREEN_SIZE[0] - 50, 290, 50, 9, 'test_image.png'), Button(SCREEN_SIZE[0] - 110, 290, 50, 10, 'test_image.png'), ] vertex0 = Vertex(1, -1, -1) vertex1 = Vertex(1, 1, -1) vertex2 = Vertex(-1, 1, -1) vertex3 = Vertex(-1, -1, -1) vertex4 = Vertex(1, -1, 1) vertex5 = Vertex(1, 1, 1) vertex6 = Vertex(-1, -1, 1) vertex7 = Vertex(-1, 1, 1) edges = ( Edge(vertex0, vertex1), Edge(vertex0, vertex3), Edge(vertex0, vertex4), Edge(vertex2, vertex1), Edge(vertex2, vertex3), Edge(vertex2, vertex7), Edge(vertex6, vertex3), Edge(vertex6, vertex4), Edge(vertex6, vertex7), Edge(vertex5, vertex1), Edge(vertex5, vertex4), Edge(vertex5, vertex7), Edge(Vertex(0, 0, 0), Vertex(-2, 0, 0)), Edge(Vertex(0, 0, 0), Vertex(0, 2, 0)), Edge(Vertex(0, 0, 0), Vertex(0, 0, -2)), )
gene_hgnc_id = 'HGNC:' + row[3] gene_entrez_id = int(row[4]) gene_entrez_id = 'Entrez:' + str(gene_entrez_id) pmid = int(row[8]) pmid = str(pmid) with io.open(mirna_to_URS_mapping_file, 'r', encoding='utf-8', newline='') as mapping_file: mapping_reader = csv.reader(mapping_file, delimiter='\t') next(mapping_reader, None) for mapping_row in mapping_reader: if mirna_name == mapping_row[2]: mirna_rnacentral_id = mapping_row[0] mirna = MiRNA([mirna_rnacentral_id], [mirna_name]) network.add_node(mirna) gene = Gene([gene_hgnc_id, gene_entrez_id], []) network.add_node(gene) if (mirna_rnacentral_id + '$' + gene_hgnc_id) in edge_source_target_lookup: edges = network.get_edges_from_to(mirna, gene, 'REGULATES') for edge in edges: pmid = edge.attributes['pmid'] + ', ' + str(pmid) network.delete_edge(edge) e = Edge(mirna, gene, 'REGULATES', {'source': 'miRTarBase', 'pmid': pmid}) network.add_edge(e) edge_source_target_lookup.append(mirna_rnacentral_id + '$' + gene_hgnc_id) else: e = Edge(mirna, gene, 'REGULATES', {'source': 'miRTarBase', 'pmid': pmid}) network.add_edge(e) edge_source_target_lookup.append(mirna_rnacentral_id + '$' + gene_hgnc_id) break network.save('data/miRTarBase/graph.json')
next(reader, None) for row in reader: variant_ids = {'PharmGKB:%s' % row[0]} if row[1]: variant_ids.add('dbSNP:%s' % row[1]) variant = Variant(variant_ids, []) variant.attributes['location'] = row[4] network.add_node(variant) if row[2] and len(row[2]) > 0: for gene_id in [ 'PharmGKB:%s' % x.strip() for x in row[2].split(',') ]: gene = Gene([gene_id], []) network.add_node(gene) network.add_edge( Edge(gene, variant, "CODES", {'source': 'PharmGKB'})) with open_file_in_zip('../data/PharmGKB/phenotypes.zip', 'phenotypes.tsv') as f: reader = csv.reader(f, delimiter='\t', quotechar='"') next(reader, None) for row in reader: disease_ids = {'PharmGKB:%s' % row[0]} disease_names = {row[1]} for id_name_pair in process_disease_external_vocabulary( split_list(row[4])): disease_ids.add(id_name_pair[0]) if id_name_pair[1] is not None: disease_names.add(id_name_pair[1]) disease = Disease(disease_ids, disease_names) network.add_node(disease)