Exemplo n.º 1
0
def one_predictive_var():
    Y = RandomVar('Y', 2)

    X1 = RandomVar('X1', 2)
    X2 = RandomVar('X2', 2)
    X3 = RandomVar('X3', 2)

    f_X1_Y = CPD([X1, Y], [1.0, 0.0, 0.0, 1.0])
    f_X2_Y = CPD([X2, Y], [0.5, 0.5, 0.5, 0.5])
    f_X3_Y = CPD([X3, Y], [0.5, 0.5, 0.5, 0.5])

    f_Y = CPD([Y], [0.5, 0.5])

    bn = BayesianNetwork([f_Y, f_X1_Y, f_X2_Y, f_X3_Y])

    # Training the model
    fs = ForwardSampler(bn)
    fs.sample(1000)
    scope, X = fs.samples_to_matrix()

    y = X[:, -1]
    X = X[:, 0:-1]

    nb = NaiveBayes()
    nb.fit(X, y)

    # Evaluating the model

    fs = ForwardSampler(bn)
    fs.sample(10)
    _, X = fs.samples_to_matrix()

    print(nb.score(X[:, 0:-1], X[:, -1]))
    print(nb.predict_proba(X[:, 0:-1]))
Exemplo n.º 2
0
def build_genetic_network(parents, allele_freqs, prob_trait_genotype):
    prob_trait_genotype = np.array(prob_trait_genotype)

    variables = {}
    for person in parents.keys():
        v1 = RandomVar(person + '_allele_1', len(allele_freqs))
        v2 = RandomVar(person + '_allele_2', len(allele_freqs))
        v3 = RandomVar(person + '_trait', 2)

        variables[person] = [v1, v2, v3]

    factors = []
    for person in parents.keys():
        v1, v2, v3 = variables[person]

        if parents[person]:
            p1_vars = variables[parents[person][0]]
            p2_vars = variables[parents[person][1]]

            f_allele1 = allele_given_parent_alleles(v1, p1_vars)
            f_allele2 = allele_given_parent_alleles(v2, p2_vars)
        else:
            f_allele1 = CPD([v1], allele_freqs)
            f_allele2 = CPD([v2], allele_freqs)

        f_phenotype = phenotype_given_genotype(variables[person],
                                               prob_trait_genotype)

        factors += [f_allele1, f_allele2, f_phenotype]

    return BayesianNetwork(factors)
Exemplo n.º 3
0
def main():
    parents = {'alice': [], 'bob': [], 'eve': ['bob', 'alice']}
    allele_freqs = [0.9, 0.1]
    prob_trait_genotype = [[0.0, 0.0], [0.0, 1.0]]

    bn = build_genetic_network(parents, allele_freqs, prob_trait_genotype)

    # Examples
    alice_trait = RandomVar('alice_trait', 2)
    bob_trait = RandomVar('bob_trait', 2)
    eve_trait = RandomVar('eve_trait', 2)

    #    alice_allele_1 = RandomVar('alice_allele_1', 2)
    #    alice_allele_2 = RandomVar('alice_allele_2', 2)
    #
    #    bob_allele_1 = RandomVar('bob_allele_1', 2)
    #    bob_allele_2 = RandomVar('bob_allele_2', 2)
    #
    #    eve_allele_1 = RandomVar('eve_allele_1', 2)
    #    eve_allele_2 = RandomVar('eve_allele_2', 2)

    ve = JointMarginalization(bn)

    print(ve.posterior([eve_trait]))
    print(ve.posterior([eve_trait], [(bob_trait, 1)]))
    print(ve.posterior([alice_trait, bob_trait], [(eve_trait, 1)]))

    fs = ForwardSampler(bn)
    fs.sample(1000)
    print(
        fs.posterior([(alice_trait, 0), (bob_trait, 0),
                      (eve_trait, 1)]) / fs.posterior([(eve_trait, 1)]))

    print(bn.graph())
Exemplo n.º 4
0
    def fit(self, X, y):
        """Fit a Multinomial Naive Bayes model to the data.

        Parameters:
        -----------
        X : two-dimensional np.array or python matrix of integers
            Matrix representing the observations. It is assumed that
            `X[:, i]` is a sample from a discrete random variable $X_i$ that
            takes values between `0` and `X[:, i].max()`
        y : one-dimensional np.array or python list of integers
            Array representing the classes assigned to each observation
        """
        X = np.asarray(X, dtype=np.int)
        if X.min() < 0:
            raise Exception('Invalid samples')

        self.classes_, y = np.unique(y, return_inverse=True)

        C = RandomVar('Y', len(self.classes_))

        scope = []
        for i in range(X.shape[1]):
            scope.append(RandomVar('X{0}'.format(i), X[:, i].max() + 1))

        graph = {v: set() for v in scope}
        graph[C] = set(scope)

        scope.append(C)

        Xy = np.concatenate([X, y.reshape(-1, 1)], axis=1)

        self.bn_ = UniformDirichlet(scope).fit_predict(Xy, graph)
        self.scope_ = scope

        return self
Exemplo n.º 5
0
def main():
    x1 = RandomVar('X1', 2)
    x2 = RandomVar('X2', 2)
    x3 = RandomVar('X3', 2)

    fx1 = CPD([x1], [0.11, 0.89])
    fx2_x1 = CPD([x2, x1], [0.59, 0.22, 0.41, 0.78])
    fx3_x2 = CPD([x3, x2], [0.39, 0.06, 0.61, 0.94])

    bn = BayesianNetwork([fx1, fx2_x1, fx3_x2])
    #    mn = MarkovNetwork([fx1, fx2_x1, fx3_x2])

    ve = VariableElimination(bn)
    jm = JointMarginalization(bn)

    print(ve.posterior([x1, x2], [(x3, 0)]))
    print(jm.posterior([x1, x2], [(x3, 0)]))

    print(ve.posterior([x1, x2, x3]))
    print(jm.posterior([x1, x2, x3]))

    print(ve.maximum_a_posteriori(evidence=[(x3, 0)]))
    print(jm.maximum_a_posteriori([x1, x2], [(x3, 0)]))

    fs = ForwardSampler(bn)
    fs.sample(10000)

    for c in itertools.product(range(2), repeat=3):
        print('{0}: {1}'.format(c, fs.posterior(zip([x1, x2, x3], c))))

    px3_0 = fs.posterior([(x3, 0)])
    for c in itertools.product(range(2), repeat=2):
        assg = list(zip([x1, x2], c)) + [(x3, 0)]

        print('{0}: {1}'.format(c, fs.posterior(assg) / px3_0))

    gs = GibbsSampler(bn)
    gs.sample(burn_in=1000, n=2000)

    for c in itertools.product(range(2), repeat=3):
        print('{0}: {1}'.format(c, gs.posterior(zip([x1, x2, x3], c))))

    gs.reset()
    gs.sample(burn_in=1000, n=1000, evidence=[(x3, 0)])

    for c in itertools.product(range(2), repeat=2):
        print('{0}: {1}'.format(c, gs.posterior(zip([x1, x2], c))))
Exemplo n.º 6
0
def simple_sampling():
    V1 = RandomVar('V1', 3)
    V2 = RandomVar('V2', 3)
    V3 = RandomVar('V3', 5)

    scope = [V1, V2, V3]
    graph = {V1: {V3}, V2: {V3}, V3: set()}

    X = np.zeros((1000, 3), dtype=np.int)
    X[:, 0:2] = np.random.choice(range(3),
                                 size=(X.shape[0], 2),
                                 p=[0.2, 0.5, 0.3])
    X[:, 2] = X[:, 0] + X[:, 1]

    mle = MaximumLikelihood(scope)
    print(mle.fit_predict(X, graph))

    ud = UniformDirichlet(scope, alpha=1.0)
    print(ud.fit_predict(X, graph))
Exemplo n.º 7
0
def three_variables():
    M = RandomVar('Market', 3)
    F = RandomVar('Found', 2)

    uMF = Factor([M, F], [0, -7, 0, 5, 0, 20])

    cM = CPD([M], [0.5, 0.3, 0.2])

    # Alternative decision rules for F
    dF_1 = CPD([F], [1.0, 0])
    dF_2 = CPD([F], [0, 1.0])  # Optimal

    id = InfluenceDiagram([cM], [uMF])
    eu = ExpectedUtility(id)

    print(eu.expected_utility([dF_1]))
    print(eu.expected_utility([dF_2]))

    print(eu.optimal_decision_rule([F]))
Exemplo n.º 8
0
def six_variables():
    M = RandomVar('Market', 3)
    S = RandomVar('Survey', 4)  # S = 3 means no survey

    T = RandomVar('Test', 2)
    F = RandomVar('Found', 2)

    uMF = Factor([M, F], [0, -7, 0, 5, 0, 20])
    uT = Factor([T], [0, -1])

    cM = CPD([M], [0.5, 0.3, 0.2])

    cST = CPD([S, M, T], [
        0.0, 0.6, 0.0, 0.3, 0.0, 0.1, 0.0, 0.3, 0.0, 0.4, 0.0, 0.4, 0.0, 0.1,
        0.0, 0.3, 0.0, 0.5, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0
    ])

    # Alternative decision rules for F given S
    dFS_1 = CPD([F, S], [0, 0, 0, 1, 1, 1, 1, 0])
    dFS_2 = CPD([F, S], [1, 0, 0, 0, 0, 1, 1, 1])  # Optimal

    # Alternative decision rules for T
    dT_1 = CPD([T], [1.0, 0.0])
    dT_2 = CPD([T], [0.0, 1.0])  # Optimal

    id = InfluenceDiagram([cM, cST], [uMF, uT])
    eu = ExpectedUtility(id)

    print(eu.expected_utility([dFS_1, dT_1]))
    print(eu.expected_utility([dFS_1, dT_2]))
    print(eu.expected_utility([dFS_2, dT_1]))
    print(eu.expected_utility([dFS_2, dT_2]))

    # New influence diagram with a single decision rule
    dT = dT_2

    id2 = InfluenceDiagram([cM, cST, dT], [uMF, uT])
    eu2 = ExpectedUtility(id2)

    dFS_optimal = eu2.optimal_decision_rule([F, S])
    print(eu.expected_utility([dFS_optimal, dT]))
Exemplo n.º 9
0
def earthquake():
    B = RandomVar('B', 2)
    E = RandomVar('E', 2)
    A = RandomVar('A', 2)
    R = RandomVar('R', 2)

    a_be = CPD([A, B, E],
               [0.999, 0.01, 0.01, 0.0001, 0.001, 0.99, 0.99, 0.9999])
    r_e = CPD([R, E], [1.0, 0.0, 0.0, 1.0])
    b = CPD([B], [0.99, 0.01])
    e = CPD([E], [0.999, 0.001])

    bn = BayesianNetwork([a_be, r_e, b, e])

    fs = ForwardSampler(bn)
    fs.sample(1000)
    scope, X = fs.samples_to_matrix()

    graph = bn.graph()
    #    graph = {B : set(), E: set(), A: set(), R: set()}

    score_l = LikelihoodScore(scope).fit(X, graph).score
    print(score_l)
    score_bic = BICScore(scope).fit(X, graph).score
    print(score_bic)
    score_b = BayesianScore(scope).fit(X, graph).score
    print(score_b)

    #    scorer = LikelihoodScore(scope)
    #    scorer = BICScore(scope)
    scorer = BayesianScore(scope)
    best_graph, best_score = restarting_local_search(X,
                                                     scope,
                                                     scorer,
                                                     restarts=1,
                                                     iterations=100,
                                                     epsilon=0.2,
                                                     verbose=1)
    print('Best:')
    print(best_score)
    print(best_graph)
Exemplo n.º 10
0
def main():
    B = RandomVar('B', 2)
    E = RandomVar('E', 2)
    A = RandomVar('A', 2)
    R = RandomVar('R', 2)

    a_be = CPD([A, B, E],
               [0.999, 0.01, 0.01, 0.0001, 0.001, 0.99, 0.99, 0.9999])
    r_e = CPD([R, E], [1.0, 0.0, 0.0, 1.0])
    b = CPD([B], [0.99, 0.01])
    e = CPD([E], [0.999, 0.001])

    bn = BayesianNetwork([a_be, r_e, b, e])

    ve = VariableElimination(bn)
    jm = JointMarginalization(bn)

    print(ve.posterior([B, E, A, R]) == jm.posterior([B, E, A, R]))

    fs = ForwardSampler(bn)
    fs.sample(1000)
Exemplo n.º 11
0
def occurrence_counter():
    x1 = RandomVar('X1', 2)
    x2 = RandomVar('X2', 2)
    x3 = RandomVar('X3', 2)

    graph = {x1: {x2}, x2: {x3}, x3: set()}
    scope = [x1, x2, x3]

    X = np.array([[0, 1, 1], [0, 1, 0], [1, 0, 0]])

    oc = OccurrenceCounter(scope, maxlen=4)

    oc.fit(X, graph)
    oc.refit(graph).stats
    print(oc.stats)
    print(oc.last_scopes)

    graph = {x1: set(), x2: set(), x3: set()}
    oc.refit(graph)
    print(oc.stats)
    print(oc.last_scopes)
Exemplo n.º 12
0
def simple_chain():
    x1 = RandomVar('X1', 2)
    x2 = RandomVar('X2', 2)
    x3 = RandomVar('X3', 2)

    fx1 = CPD([x1], [0.11, 0.89])
    fx2_x1 = CPD([x2, x1], [0.59, 0.22, 0.41, 0.78])
    fx3_x2 = CPD([x3, x2], [0.39, 0.06, 0.61, 0.94])

    bn = BayesianNetwork([fx1, fx2_x1, fx3_x2])
    graph = bn.graph()
    print(bn)

    fs = ForwardSampler(bn)
    fs.sample(1000)
    scope, X = fs.samples_to_matrix()

    mle = MaximumLikelihood(scope)
    print(mle.fit_predict(X, graph))

    ud = UniformDirichlet(scope, alpha=1.0)
    print(ud.fit_predict(X, graph))
Exemplo n.º 13
0
def simple_chain():
    x1 = RandomVar('X1', 2)
    x2 = RandomVar('X2', 2)
    x3 = RandomVar('X3', 2)

    fx1 = CPD([x1], [0.11, 0.89])
    fx2_x1 = CPD([x2, x1], [0.59, 0.22, 0.41, 0.78])
    fx3_x2 = CPD([x3, x2], [0.39, 0.06, 0.61, 0.94])

    bn = BayesianNetwork([fx1, fx2_x1, fx3_x2])

    fs = ForwardSampler(bn)
    fs.sample(2000)

    scope, X = fs.samples_to_matrix()

    graph = bn.graph()
    #    graph = {x1 : set(), x2: set(), x3: set()}

    score_l = LikelihoodScore(scope).fit(X, graph).score
    print(score_l)
    score_bic = BICScore(scope).fit(X, graph).score
    print(score_bic)
    score_b = BayesianScore(scope).fit(X, graph).score
    print(score_b)

    #    scorer = LikelihoodScore(scope)
    scorer = BICScore(scope)
    #    scorer = BayesianScore(scope)
    best_graph, best_score = restarting_local_search(X,
                                                     scope,
                                                     scorer,
                                                     restarts=5,
                                                     iterations=50,
                                                     epsilon=0.2,
                                                     verbose=1)
    print('Best:')
    print(best_score)
    print(best_graph)
Exemplo n.º 14
0
def traffic():
    A = RandomVar('A', 2)
    T = RandomVar('T', 2)
    P = RandomVar('P', 2)

    fP = CPD([P], [0.99, 0.01])
    fA = CPD([A], [0.9, 0.1])

    fT_AP = CPD([T, P, A], [0.9, 0.5, 0.4, 0.1, 0.1, 0.5, 0.6, 0.9])

    bn = BayesianNetwork([fP, fA, fT_AP])
    print(bn)

    fs = ForwardSampler(bn)
    fs.sample(1000)
    scope, X = fs.samples_to_matrix()

    mle = MaximumLikelihood(scope)
    print(mle.fit_predict(X, bn.graph()))

    ud = UniformDirichlet(scope, alpha=1.0)
    print(ud.fit_predict(X, bn.graph()))
Exemplo n.º 15
0
def traffic():
    A = RandomVar('A', 2)
    T = RandomVar('T', 2)
    P = RandomVar('P', 2)

    fP = CPD([P], [0.99, 0.01])
    fA = CPD([A], [0.9, 0.1])

    fT_AP = CPD([T, P, A], [0.9, 0.5, 0.4, 0.1, 0.1, 0.5, 0.6, 0.9])

    bn = BayesianNetwork([fP, fA, fT_AP])
    #    print(bn)

    fs = ForwardSampler(bn)
    fs.sample(2000)
    scope, X = fs.samples_to_matrix()

    graph = bn.graph()

    score_l = LikelihoodScore(scope).fit(X, graph).score
    print(score_l)
    score_bic = BICScore(scope).fit(X, graph).score
    print(score_bic)
    score_b = BayesianScore(scope).fit(X, graph).score
    print(score_b)

    #    scorer = LikelihoodScore(scope)
    scorer = BICScore(scope)
    #    scorer = BayesianScore(scope)
    best_graph, best_score = restarting_local_search(X,
                                                     scope,
                                                     scorer,
                                                     restarts=5,
                                                     iterations=50,
                                                     epsilon=0.2,
                                                     verbose=1)
    print('Best:')
    print(best_score)
    print(best_graph)
Exemplo n.º 16
0
def main():
    A = RandomVar('A', 2)
    T = RandomVar('T', 2)
    P = RandomVar('P', 2)

    fP = CPD([P], [0.99, 0.01])
    fA = CPD([A], [0.9, 0.1])

    fT_AP = CPD([T, P, A], [0.9, 0.5, 0.4, 0.1, 0.1, 0.5, 0.6, 0.9])

    bn = BayesianNetwork([fP, fA, fT_AP])

    ve = VariableElimination(bn)
    jm = JointMarginalization(bn)

    print(jm.maximum_a_posteriori([A], [(T, 1)]))

    print(ve.posterior([A], [(T, 1)]))
    print(jm.posterior([A], [(T, 1)]))

    print(ve.posterior([A, T, P]))
    print(jm.posterior([A, T, P]))
Exemplo n.º 17
0
def simple_sampling():
    V1 = RandomVar('V1', 3)
    V2 = RandomVar('V2', 3)
    V3 = RandomVar('V3', 5)

    scope = [V1, V2, V3]
    graph = {V1: {V3}, V2: {V3}, V3: set()}

    X = np.zeros((1000, 3), dtype=np.int)
    X[:, 0:2] = np.random.choice(range(3),
                                 size=(X.shape[0], 2),
                                 p=[0.2, 0.5, 0.3])
    X[:, 2] = X[:, 0] + X[:, 1]

    score_l = LikelihoodScore(scope).fit(X, graph).score
    print(score_l)
    score_bic = BICScore(scope).fit(X, graph).score
    print(score_bic)
    score_b = BayesianScore(scope).fit(X, graph).score
    print(score_b)

    #    scorer = LikelihoodScore(scope)
    scorer = BICScore(scope)
    #    scorer = BayesianScore(scope)
    best_graph, best_score = restarting_local_search(X,
                                                     scope,
                                                     scorer,
                                                     restarts=5,
                                                     iterations=50,
                                                     epsilon=0.2,
                                                     verbose=1)
    print('Best:')
    print(best_score)
    print(best_graph)

    print(BayesianScore(scope).fit(X, best_graph).score)
Exemplo n.º 18
0
def earthquake():
    B = RandomVar('B', 2)
    E = RandomVar('E', 2)
    A = RandomVar('A', 2)
    R = RandomVar('R', 2)

    a_be = CPD([A, B, E],
               [0.999, 0.01, 0.01, 0.0001, 0.001, 0.99, 0.99, 0.9999])
    r_e = CPD([R, E], [1.0, 0.0, 0.0, 1.0])
    b = CPD([B], [0.99, 0.01])
    e = CPD([E], [0.999, 0.001])

    bn = BayesianNetwork([a_be, r_e, b, e])
    print(bn)

    fs = ForwardSampler(bn)
    fs.sample(1000)
    scope, X = fs.samples_to_matrix()

    mle = MaximumLikelihood(scope)
    print(mle.fit_predict(X, bn.graph()))

    ud = UniformDirichlet(scope, alpha=1.0)
    print(ud.fit_predict(X, bn.graph()))