Exemplo n.º 1
0
 def forward(self, x, with_feature=False):
     x = self.features(x)
     f_list, x = unpack_feature(x)
     x = self.avgpool(x)
     x = x.view(x.size(0), -1)
     f_list.append(x)
     x = self.classifier(x)
     return pack_feature(f_list, x, with_feature)
Exemplo n.º 2
0
 def forward(self, x, with_feature=False):
     features = self.features(x)
     out = F.relu(features, inplace=True)
     out = F.adaptive_avg_pool2d(out, (1, 1))
     out = torch.flatten(out, 1)
     out = self.classifier(out)
     f_list, out = unpack_feature(out)
     return pack_feature(f_list, out, with_feature)
Exemplo n.º 3
0
    def forward(self, x, with_feature=True):
        f_list, x = unpack_feature(x)

        identity = x

        out = self.conv1(x)
        out = self.bn1(out)
        out = self.relu(out)

        out = self.conv2(out)
        out = self.bn2(out)

        if self.downsample is not None:
            identity = self.downsample(x)

        out += identity
        out = self.relu(out)

        return pack_feature(f_list, out, with_feature)
Exemplo n.º 4
0
    def forward(self, x, with_feature=False):
        x = self.conv1(x)
        x = self.bn1(x)
        x = self.relu(x)
        x = self.maxpool(x)

        x = self.layer1(x)
        x = self.layer2(x)
        x = self.layer3(x)
        x = self.layer4(x)

        f_list, x = unpack_feature(x)

        x = self.avgpool(x)
        x = x.reshape(x.size(0), -1)

        f_list.append(x)

        x = self.fc(x)

        return pack_feature(f_list, x, with_feature)