Exemplo n.º 1
0
class ModelLoader:
    def __init__(self, path: str):
        self.path = path
        self.net = Net()

    def load_model(self):
        self.net.load_state_dict(
            torch.load(self.path, map_location=torch.device('cpu')))
        self.net.eval()
        return self.net
Exemplo n.º 2
0
from flask import Flask, jsonify, request
from flask_restful import Api, Resource
import numpy as np
import traceback
import json
from model.model import Net
import torch
import cv2

app = Flask(__name__)
api = Api(app)

model = Net()
model.load_state_dict(torch.load('mnist_cnn.pt'))
model.eval()


# convert request_input dict to input accepted by model.
def parse_input(request_input):
    """parse input to make it ready for model input.

    Arguments:
        request_input::file- input received from API call.

    Returns:
        model_ready_input::torch.Tensor- data ready to be fed into model.
    """
    img = request_input.read()
    img = np.frombuffer(img, np.uint8)
    img = cv2.imdecode(img, cv2.IMREAD_COLOR)
    img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
Exemplo n.º 3
0
                    default="",
                    help="path to load model checkpoint")
parser.add_argument("--test",
                    type=str,
                    default="../ITS_data/test/data",
                    help="path to load test images")

opt = parser.parse_args()

# for i in range(669,670):
net = Net()
print(opt)

print(opt.checkpoint)
net.load_state_dict(torch.load(opt.checkpoint)['state_dict'])
net.eval()
net = nn.DataParallel(net, device_ids=[0]).cuda()

images = utils.load_all_image(opt.test)

ssims = []
psnrs = []
psnrs2 = []
str_label = "../ITS_data/test/label/"


def compute_psnr(ref_im, res_im):
    ref_img = scipy.misc.fromimage(ref_im).astype(float) / 255.0

    res_img = scipy.misc.fromimage(res_im).astype(float) / 255.0
    squared_error = np.square(ref_img - res_img)