Exemplo n.º 1
0
 def sample(self):
     MVN_samples = (
         self.mus + self.L1 *
         torch.unsqueeze(torch.randn_like(self.corrs, device=self.device),
                         dim=-1)  # [..., GMM_c, 2]
         + self.L2 * torch.unsqueeze(
             torch.randn_like(self.corrs, device=self.device), dim=-1)
     )  # (manual 2x2 matmul)
     cat_samples = self.cat.sample()  # [...]
     selector = torch.unsqueeze(to_one_hot(cat_samples, self.GMM_c,
                                           self.device),
                                dim=-1)
     return torch.sum(MVN_samples * selector, dim=-2)
    def rsample(self, sample_shape=torch.Size()):
        """
        Generates a sample_shape shaped reparameterized sample or sample_shape
        shaped batch of reparameterized samples if the distribution parameters
        are batched.

        :param sample_shape: Shape of the samples
        :return: Samples from the GMM.
        """
        mvn_samples = (self.mus + torch.squeeze(torch.matmul(
            self.L,
            torch.unsqueeze(torch.randn(size=sample_shape + self.mus.shape,
                                        device=self.device),
                            dim=-1)),
                                                dim=-1))
        component_cat_samples = self.pis_cat_dist.sample(sample_shape)
        selector = torch.unsqueeze(to_one_hot(component_cat_samples,
                                              self.components),
                                   dim=-1)
        return torch.sum(mvn_samples * selector, dim=-2)