Exemplo n.º 1
0
class CompareAlgoNetworkBowdenDataSet(unittest.TestCase):
    """
    Compares the algorithm and the network performance for the Bowden et al.
    (2003) dataset.
    Maximal number of searched items is 8.
    """
    def setUp(self):
        self.net = Network()
        path = '../../ratdata/bowden/rat_items'
        self.items = np.loadtxt(path, dtype=np.character)
        self.nr_words = 10
        self.net.max_visited = self.nr_words

    def testEqual(self):
        equal = 0
        not_equal = []

        for i, rat_item in enumerate(self.items):
            # words
            cues, target = rat_item[:3], rat_item[3]

            # word ids
            cue_ids = [self.net.voc[c] for c in cues]
            target_id = self.net.voc[target]

            # run the algorithm simulation
            _, visited_alg = spread_activity(init_nodes=cue_ids,
                                             target=target_id,
                                             W=self.net.W,
                                             max_visited=self.nr_words)

            # ...and the network simulation
            self.net.setup_problem(cues, target)
            print '\n', i, cues, target, target_id

            # WTA can fail if noise added to two equal numbers is not enough
            # to pick a winner. If this happens, the simulation is repeated
            ok = True
            while ok:
                try:
                    self.net.run()
                    ok = False
                except BaseException:
                    print 'WTA failed, retrying the run!'
                    continue

            l1, l2 = visited_alg, list(self.net.visited())

            if target_id in set(l1) and target_id not in set(l2) or\
                    target_id not in set(l1) and target_id in set(l2):
                not_equal.append(i)
            else:
                print 'ok', equal
                equal += 1

            print 'A:', l1
            print 'N:', l2

        print not_equal
class CompareAlgoNetworkBowdenDataSet(unittest.TestCase):
    """
    Compares the algorithm and the network performance for the Bowden et al.
    (2003) dataset.
    Maximal number of searched items is 8.
    """

    def setUp(self):
        self.net = Network()
        path = "../../ratdata/bowden/rat_items"
        self.items = np.loadtxt(path, dtype=np.character)
        self.nr_words = 10
        self.net.max_visited = self.nr_words

    def testEqual(self):
        equal = 0
        not_equal = []

        for i, rat_item in enumerate(self.items):
            # words
            cues, target = rat_item[:3], rat_item[3]

            # word ids
            cue_ids = [self.net.voc[c] for c in cues]
            target_id = self.net.voc[target]

            # run the algorithm simulation
            _, visited_alg = spread_activity(
                init_nodes=cue_ids, target=target_id, W=self.net.W, max_visited=self.nr_words
            )

            # ...and the network simulation
            self.net.setup_problem(cues, target)
            print "\n", i, cues, target, target_id

            # WTA can fail if noise added to two equal numbers is not enough
            # to pick a winner. If this happens, the simulation is repeated
            ok = True
            while ok:
                try:
                    self.net.run()
                    ok = False
                except BaseException:
                    print "WTA failed, retrying the run!"
                    continue

            l1, l2 = visited_alg, list(self.net.visited())

            if target_id in set(l1) and target_id not in set(l2) or target_id not in set(l1) and target_id in set(l2):
                not_equal.append(i)
            else:
                print "ok", equal
                equal += 1

            print "A:", l1
            print "N:", l2

        print not_equal
class TestActivityLevels(unittest.TestCase):
    """
    This test-suite compares the performance of the search algorithm and the
    neural network model:
        a) testActivityEqualSingleCue
            compares the activity of all nodes in
            the algorithm and the network after presenting a single cue.

        b) testActivityEqualThreeCues
            compares the activity of all nodes in
            the algorithm and the network after presenting all three cues.

        c) testOrderEightWords
            compares the order of the explored nodes, and the activity levels
            up to a certain tolerance level

    """

    def setUp(self):
        self.net = Network()

    def testActivityEqualSingleCue(self):
        cue = "match"
        target = "fire"

        target_id = self.net.voc[target]

        max_visited = 1
        self.net.max_visited = max_visited

        act_alg, _ = spread_activity(
            init_nodes=[self.net.voc[cue]], target=target_id, W=self.net.W, max_visited=max_visited
        )

        self.net.setup_problem([cue], target)
        self.net.run()

        np.testing.assert_almost_equal(act_alg, self.net.a[self.net.t_max], decimal=3)

    def testActivityEqualThreeCues(self):
        cues = ["match", "game", "stick"]
        target = "fire"

        target_id = self.net.voc[target]
        max_visited = 3
        self.net.max_visited = max_visited

        self.net.setup_problem(cues, target)

        act_alg, _ = spread_activity(
            init_nodes=self.net.cue_ids, target=target_id, W=self.net.W, max_visited=max_visited
        )

        self.net.run()
        np.testing.assert_almost_equal(act_alg, self.net.a[self.net.t_max], decimal=2)

    def testOrderEightWords(self):
        # number of words along the search path
        nr_words = 8

        cues = ["cottage", "swiss", "cake"]
        target = "cheese"

        target_id = self.net.voc[target]

        # get word ids
        cue_ids = [self.net.voc[c] for c in cues]

        act_alg, visited_alg = spread_activity(init_nodes=cue_ids, target=target_id, W=self.net.W, max_visited=nr_words)
        self.net.setup_problem(cues, target)
        self.net.max_visited = nr_words
        self.net.run()

        visited_net = self.net.visited()

        np.testing.assert_equal(visited_alg, visited_net)

        a1 = self.net.a[self.net.t_max, visited_net]
        a2 = act_alg[visited_alg]

        # tolerate diffrences in activities up to 0.1
        np.testing.assert_allclose(a1, a2, rtol=1e-1)
class TestActivityLevels(unittest.TestCase):
    """
    This test-suite compares the performance of the search algorithm and the
    neural network model:
        a) testActivityEqualSingleCue
            compares the activity of all nodes in
            the algorithm and the network after presenting a single cue.

        b) testActivityEqualThreeCues
            compares the activity of all nodes in
            the algorithm and the network after presenting all three cues.

        c) testOrderEightWords
            compares the order of the explored nodes, and the activity levels
            up to a certain tolerance level

    """
    def setUp(self):
        self.net = Network()

    def testActivityEqualSingleCue(self):
        cue = 'match'
        target = 'fire'

        target_id = self.net.voc[target]

        max_visited = 1
        self.net.max_visited = max_visited

        act_alg, _ = spread_activity(init_nodes=[self.net.voc[cue]],
                                     target=target_id,
                                     W=self.net.W,
                                     max_visited=max_visited)

        self.net.setup_problem([cue], target)
        self.net.run()

        np.testing.assert_almost_equal(act_alg,
                                       self.net.a[self.net.t_max],
                                       decimal=3)

    def testActivityEqualThreeCues(self):
        cues = ['match', 'game', 'stick']
        target = 'fire'

        target_id = self.net.voc[target]
        max_visited = 3
        self.net.max_visited = max_visited

        self.net.setup_problem(cues, target)

        act_alg, _ = spread_activity(init_nodes=self.net.cue_ids,
                                     target=target_id,
                                     W=self.net.W,
                                     max_visited=max_visited)

        self.net.run()
        np.testing.assert_almost_equal(act_alg,
                                       self.net.a[self.net.t_max],
                                       decimal=2)

    def testOrderEightWords(self):
        # number of words along the search path
        nr_words = 8

        cues = ['cottage', 'swiss', 'cake']
        target = 'cheese'

        target_id = self.net.voc[target]

        # get word ids
        cue_ids = [self.net.voc[c] for c in cues]

        act_alg, visited_alg = spread_activity(init_nodes=cue_ids,
                                               target=target_id,
                                               W=self.net.W,
                                               max_visited=nr_words)
        self.net.setup_problem(cues, target)
        self.net.max_visited = nr_words
        self.net.run()

        visited_net = self.net.visited()

        np.testing.assert_equal(visited_alg, visited_net)

        a1 = self.net.a[self.net.t_max, visited_net]
        a2 = act_alg[visited_alg]

        # tolerate diffrences in activities up to 0.1
        np.testing.assert_allclose(a1, a2, rtol=1e-1)