Exemplo n.º 1
0
    def loss(self, score, delta_per_class, target_delta_for_sample_roi,
             bbox_bg_label_for_sample_roi):

        assert isinstance(score, Variable)
        assert isinstance(delta_per_class, Variable)
        assert isinstance(target_delta_for_sample_roi, np.ndarray)
        assert isinstance(bbox_bg_label_for_sample_roi, np.ndarray)
        #---------- debug
        target_delta_for_sample_roi = Variable(
            torch.FloatTensor(target_delta_for_sample_roi))
        bbox_bg_label_for_sample_roi = Variable(
            torch.LongTensor(bbox_bg_label_for_sample_roi))
        if torch.cuda.is_available():
            target_delta_for_sample_roi = target_delta_for_sample_roi.cuda()
            bbox_bg_label_for_sample_roi = bbox_bg_label_for_sample_roi.cuda()

        n_sample = score.shape[0]
        delta_per_class = delta_per_class.view(n_sample, -1, 4)

        # get delta for roi w.r.t its corresponding bbox label
        index = torch.arange(0, n_sample).long()
        if torch.cuda.is_available():
            index = index.cuda()
        delta = delta_per_class[index, bbox_bg_label_for_sample_roi.data]

        head_delta_loss = delta_loss(delta, target_delta_for_sample_roi,
                                     bbox_bg_label_for_sample_roi, 1)
        head_class_loss = F.cross_entropy(score, bbox_bg_label_for_sample_roi)

        return head_delta_loss + head_class_loss
Exemplo n.º 2
0
    def loss(self, delta, score, anchor, gt_bbox, image_size):
        #---------- debug
        assert isinstance(delta, Variable)#this is a good way to check the conditions
        assert isinstance(score, Variable)
        assert isinstance(anchor, np.ndarray)
        assert isinstance(gt_bbox, np.ndarray)
        #---------- debug
        target_delta, anchor_label = self.anchor_target_creator.make_anchor_target(anchor, gt_bbox, image_size)
        target_delta = Variable(torch.FloatTensor(target_delta))
        anchor_label = Variable(torch.LongTensor(anchor_label))
        if torch.cuda.is_available():
            target_delta, anchor_label = target_delta.cuda(), anchor_label.cuda()

        rpn_delta_loss = delta_loss(delta, target_delta, anchor_label, 3)
        
        rpn_class_loss = F.cross_entropy(score, anchor_label, ignore_index=-1)   # ignore loss for label value -1

        return rpn_delta_loss + rpn_class_loss