Exemplo n.º 1
0
    def _run_train_epoch(self, config, train_set, val_set, epoch, lr_schedule):
        """Performs an epoch of training
        Args:
            config: Config instance
            train_set: Dataset instance
            val_set: Dataset instance
            epoch: (int) id of the epoch, starting at 0
            lr_schedule: LRSchedule instance that takes care of learning proc
        Returns:
            score: (float) model will select weights that achieve the highest score
        """
        # logging
        batch_size = config.batch_size
        nbatches = (len(train_set) + batch_size - 1) // batch_size
        prog = Progbar(nbatches)
        self.model.train()
        self.encoder.train()
        self.decoder.train()
        train_loader = torch.utils.data.DataLoader(
            ImgFormulaDataset(train_set),
            batch_size=batch_size,
            shuffle=True,
            num_workers=3,
            pin_memory=True)

        # for i, (img, formula) in enumerate(train_loader):
        for i, (img, formula) in enumerate(minibatches(train_set, batch_size)):
            img = pad_batch_images_2(img)
            img = torch.FloatTensor(img)  # (N, W, H, C)
            formula, formula_length = pad_batch_formulas(
                formula, self._vocab.id_pad, self._vocab.id_end)
            img = img.permute(0, 3, 1, 2)  # (N, C, W, H)
            formula = torch.LongTensor(formula)  # (N,)

            loss_eval = self.getLoss(img,
                                     formula=formula,
                                     lr=lr_schedule.lr,
                                     dropout=config.dropout,
                                     training=True)
            prog.update(i + 1, [("loss", loss_eval), ("lr", lr_schedule.lr)])

            # update learning rate
            lr_schedule.update(batch_no=epoch * nbatches + i)

        self.logger.info("- Training: {}".format(prog.info))
        self.logger.info("- Config: (before evaluate, we need to see config)")
        config.show(fun=self.logger.info)

        # evaluation
        config_eval = Config({
            "dir_answers": self._dir_output + "formulas_val/",
            "batch_size": config.batch_size
        })
        scores = self.evaluate(config_eval, val_set)
        score = scores["perplexity"]
        lr_schedule.update(score=score)

        return score
Exemplo n.º 2
0
    def _get_feed_dict(self, img, formula=None, lr=None, dropout=1):
        """Returns a dict 网络的输入"""
        img = pad_batch_images(img)

        fd = {
            self.img: img,
            self.dropout: dropout,
        }

        if formula is not None:
            formula, formula_length = pad_batch_formulas(formula, self._vocab.id_pad, self._vocab.id_end)
            # print img.shape, formula.shape
            fd[self.formula] = formula
            fd[self.formula_length] = formula_length
        if lr is not None:
            fd[self.lr] = lr

        return fd
Exemplo n.º 3
0
    def _run_evaluate_epoch(self, config, test_set):
        """Performs an epoch of evaluation
        Args:
            test_set: Dataset instance
            params: (dict) with extra params in it
                - "dir_name": (string)
        Returns:
            scores: (dict) scores["acc"] = 0.85 for instance
        """
        self.model.eval()
        self.encoder.eval()
        self.decoder.eval()
        # initialize containers of references and predictions
        if self._config.decoding == "greedy":
            refs, hyps = [], [[]]
        elif self._config.decoding == "beam_search":
            refs, hyps = [], [[] for i in range(self._config.beam_size)]
        references = list()  # references (true captions) for calculating BLEU-4 score
        hypotheses = list()  # hypotheses (predictions)
        with torch.no_grad():
            nbatches = len(test_set)
            prog = Progbar(nbatches)
            test_loader = torch.utils.data.DataLoader(ImgFormulaDataset(test_set),
                                                      batch_size=nbatches,
                                                      shuffle=True, num_workers=3, pin_memory=True)

            for i, (img, formula) in enumerate(minibatches(test_set, nbatches)):
                # print(type(img), len(img), img[0].shape)
                # print(type(formula), formula)
                # Move to GPU, if available
                img = pad_batch_images_2(img)
                img = torch.FloatTensor(img)  # (N, W, H, C)
                formula, formula_length = pad_batch_formulas(formula, self._vocab.id_pad, self._vocab.id_end)
                img = img.permute(0, 3, 1, 2)  # (N, C, W, H)
                formula = torch.LongTensor(formula)  # (N,)
                img = img.to(self.device)
                formula = formula.to(self.device)

                # Forward prop.
                imgs = self.encoder(img)
                scores, caps_sorted, decode_lengths, alphas, sort_ind = self.decoder(imgs, formula, torch.LongTensor([[len(i)] for i in formula]))

                # Since we decoded starting with <start>, the targets are all words after <start>, up to <end>
                targets = caps_sorted[:, 1:]

                # Remove timesteps that we didn't decode at, or are pads
                # pack_padded_sequence is an easy trick to do this
                scores, _ = pack_padded_sequence(scores, decode_lengths, batch_first=True)
                targets, _ = pack_padded_sequence(targets, decode_lengths, batch_first=True)

                # Calculate loss
                loss = self.criterion(scores, targets)

                print(scores.shape, targets.shape)
                print(loss)

                alpha_c = 1.
                # Add doubly stochastic attention regularization
                loss += alpha_c * ((1. - alphas.sum(dim=1)) ** 2).mean()

                loss_eval = loss.item()

                prog.update(i + 1, [("loss", loss_eval), ("perplexity", np.exp(loss_eval))])

                # Store references (true captions), and hypothesis (prediction) for each image
                # If for n images, we have n hypotheses, and references a, b, c... for each image, we need -
                # references = [[ref1a, ref1b, ref1c], [ref2a, ref2b], ...], hypotheses = [hyp1, hyp2, ...]
                # print("---------------------------------------------------------------formula and prediction :")
                for form, preds in zip(formula, scores):
                    refs.append(form)
                    # print(form, "    ----------    ", preds[0])
                    for i, pred in enumerate(preds):
                        hyps[i].append(pred)

            files = write_answers(refs, hyps, self._vocab.id_to_tok, config.dir_answers, self._vocab.id_end)
            scores = score_files(files[0], files[1])
            # perp = - np.exp(ce_words / float(n_words))
            # scores["perplexity"] = perp

        self.logger.info("- Evaluating: {}".format(prog.info))

        return {
            "perplexity": loss.item()
        }
Exemplo n.º 4
0
sess = tf.Session()
sess.run(tf.global_variables_initializer())

feed_dicts = []
batch_size = config.batch_size
for i, (_img, _formula) in enumerate(minibatches(train_set, batch_size)):
    fd = {
        inputs: _img,
        dropout: 0.2,
        training: True,
        learning_rate: 0.0001,
    }
    if _formula is not None:
        _formula, _formula_length = pad_batch_formulas(
            _formula,
            vocab.id_pad,
            vocab.id_end
        )
        fd[formula] = _formula
        fd[formula_length] = _formula_length
    feed_dicts.append(fd)

# all_img = []
# all_formula = []
# for i, (_img, _formula) in enumerate(minibatches(train_set, batch_size)):
#     all_img.append(_img)
#     if _formula is not None:
#         _formula, _formula_length = pad_batch_formulas(
#             _formula,
#             vocab.id_pad,
#             vocab.id_end