def evaluate_sess_sample(sess,
                         model_spec,
                         num_steps,
                         writer=None,
                         params=None):
    """Train the model on `num_steps` batches.

    Args:
        sess: (tf.Session) current session
        model_spec: (dict) contains the graph operations or nodes needed for training
        num_steps: (int) train for this number of batches
        writer: (tf.summary.FileWriter) writer for summaries. Is None if we don't log anything
        params: (Params) hyperparameters
    """
    update_metrics = model_spec['update_metrics']
    eval_metrics = model_spec['metrics']
    global_step = tf.train.get_global_step()
    # Load the evaluation dataset into the pipeline and initialize the metrics init op
    # sess.run(model_spec['iterator_init_op'])
    sess.run(model_spec['metrics_init_op'])
    for temp_query_id in range(int(num_steps)):
        sess.run(update_metrics)
    # Get the values of the metrics
    metrics_values = {k: v[0] for k, v in eval_metrics.items()}
    metrics_val = sess.run(metrics_values)
    expanded_metrics_val = get_expaned_metrics(metrics_val)
    metrics_string = " ; ".join("{}: {:05.4f}".format(k, v)
                                for k, v in expanded_metrics_val.items())
    logging.info("- Eval metrics: " + metrics_string)
    # Add summaries manually to writer at global_step_val
    return expanded_metrics_val['loss']
Exemplo n.º 2
0
def evaluate_sess(sess, model_spec, num_steps, writer=None, params=None):
    """Train the model on `num_steps` batches.

    Args:
        sess: (tf.Session) current session
        model_spec: (dict) contains the graph operations or nodes needed for training
        num_steps: (int) train for this number of batches
        writer: (tf.summary.FileWriter) writer for summaries. Is None if we don't log anything
        params: (Params) hyperparameters
    """
    update_metrics = model_spec['update_metrics']
    eval_metrics = model_spec['metrics']
    global_step = tf.train.get_global_step()
    # Load the evaluation dataset into the pipeline and initialize the metrics init op
    # sess.run([model_spec['iterator_init_op'], model_spec['metrics_init_op']])
    sess.run(model_spec['iterator_init_op'])
    sess.run(model_spec['metrics_init_op'])
    if params.save_predictions:
        # save the predictions and lable_qid to files
        prediction_list = []
        label_list = []
        # compute metrics over the dataset
        for temp_query_id in range(int(num_steps)):
            # prediction_per_query, label_per_query, height = sess.run([predictions, labels, model_spec["height"]])
            # logging.info("- height per query: \n" + str(height))
            prediction_per_query, label_per_query, label_gains, _ = sess.run([model_spec["predictions"], \
                model_spec["labels"], model_spec["label_gains"], update_metrics])
            prediction_list.extend([v[0] for v in prediction_per_query.tolist()])
            # prediction_string = "\n".join(str(v[0]) for v in prediction_per_query.tolist())
            # logging.info("- prediction_per_query: \n" + str(prediction_string))
            label_per_query_list = label_per_query.tolist()
            label_gains_list = label_gains.tolist()
            # label_per_query_list_string = "\n".join(str(v[0]) for v in label_per_query_list)
            # logging.warning("- label_per_query_list_string: \n" + label_per_query_list_string)
            # label_gains_list_string = "\n".join(str(v[0]) for v in label_gains_list)
            # logging.info("- label_gains_list: \n" + label_gains_list_string)
            label_list.extend(['{} qid:{} 1:{}'.format(int(label_per_query_list[i][0]), \
                temp_query_id, \
                label_gains_list[i][0]) \
                for i in range(0, len(label_per_query_list))])
        save_predictions_to_file(prediction_list, "./prediction_output")
        # tensorflow mess up test input orders
        save_predictions_to_file(label_list, "./label_output")
    else:
        # only update metrics
        for temp_query_id in range(int(num_steps)):
            sess.run(update_metrics)
    # Get the values of the metrics
    metrics_values = {k: v[0] for k, v in eval_metrics.items()}
    metrics_val = sess.run(metrics_values)
    expanded_metrics_val = get_expaned_metrics(metrics_val, params.top_ks)
    metrics_string = " ; ".join("{}: {:05.3f}".format(k, v) for k, v in expanded_metrics_val.items())
    logging.info("- Eval metrics: " + metrics_string)
    # Add summaries manually to writer at global_step_val
    if writer is not None:
        global_step_val = sess.run(global_step)
        for tag, val in expanded_metrics_val.items():
            summ = tf.Summary(value=[tf.Summary.Value(tag=tag, simple_value=val)])
            writer.add_summary(summ, global_step_val)
    return expanded_metrics_val
def take_train_samples_sess(sess, model_spec, num_steps, params, sorted_index):
    """Train the model on `num_steps` batches.

    Args:
        sess: (tf.Session) current session
        model_spec: (dict) contains the graph operations or nodes needed for training
        num_steps: (int) train for this number of batches
        writer: (tf.summary.FileWriter) writer for summaries. Is None if we don't log anything
        params: (Params) hyperparameters
    # """
    # logging.info('sorted_index:\n {}'.format(sorted_index))
    update_metrics = model_spec['update_metrics']
    eval_metrics = model_spec['metrics']
    # global_step = tf.train.get_global_step()
    # Load the evaluation dataset into the pipeline and initialize the metrics init op
    # sess.run(model_spec['iterator_init_op'])
    sess.run(model_spec['metrics_init_op'])
    count = 0
    with tf.python_io.TFRecordWriter(
            os.path.join(params.data_dir, 'sample-temp.tfrecords')) as writer:
        # compute metrics over the dataset
        for temp_query_id in range(int(num_steps) + 1):
            features, labels, _ = sess.run([model_spec["features"], \
                model_spec["labels"], update_metrics])
            # whether save the sample
            if temp_query_id not in sorted_index:
                continue
            for (feature, label) in zip(features, labels):
                image_raw = feature.tostring()
                label_raw = np.argmax(label)
                # logging.info('------------------------------------------------')
                count += 1
                # logging.info(type(feature))
                # logging.info(feature.shape)
                # logging.info(label_raw)
                # logging.info('------------------------------------------------')
                example = tf.train.Example(features=tf.train.Features(
                    feature={
                        'height': _int64_feature(int(params.height)),
                        'width': _int64_feature(int(params.width)),
                        'depth': _int64_feature(int(params.depth)),
                        'label': _int64_feature(int(label_raw)),
                        'image_raw': _bytes_feature(image_raw)
                    }))
                writer.write(example.SerializeToString())
    # Get the values of the metrics
    metrics_values = {k: v[0] for k, v in eval_metrics.items()}
    metrics_val = sess.run(metrics_values)
    expanded_metrics_val = get_expaned_metrics(metrics_val)
    metrics_string = " ; ".join("{}: {:05.4f}".format(k, v)
                                for k, v in expanded_metrics_val.items())
    logging.info("- take_train_samples_sess metrics: " + metrics_string)
    # logging.info('*********************************************{}'.format(count))
    return expanded_metrics_val
Exemplo n.º 4
0
def train_sess(sess, model_spec, num_steps, writer, params):
    """Train the model on `num_steps` batches

    Args:
        sess: (tf.Session) current session
        model_spec: (dict) contains the graph operations or nodes needed for training
        num_steps: (int) train for this number of batches
        writer: (tf.summary.FileWriter) writer for summaries
        params: (Params) hyperparameters
    """
    # Get relevant graph operations or nodes needed for training

    loss = model_spec['loss']
    train_op = model_spec['train_op']
    update_metrics = model_spec['update_metrics']
    metrics = model_spec['metrics']
    summary_op = model_spec['summary_op']
    global_step = tf.train.get_global_step()

    # Load the training dataset into the pipeline and initialize the metrics local variables
    # sess.run(model_spec['iterator_init_op'])
    sess.run(model_spec['metrics_init_op'])
    # Use tqdm for progress bar
    t = trange(int(num_steps))
    epoch_loss = []
    for i in t:
        # Evaluate summaries for tensorboard only once in a while
        if i == params.save_summary_steps - 1:
            # if i % params.save_summary_steps == 0:
            # Perform a mini-batch update
            _, _, loss_val, summ, global_step_val = sess.run(
                [train_op, update_metrics, loss, summary_op, global_step])
            # Write summaries for tensorboard
            writer.add_summary(summ, global_step_val)
        else:
            _, _, loss_val = sess.run([train_op, update_metrics, loss])
        # Log the loss in the tqdm progress bar
        # t.set_postfix(loss='{:05.3f}'.format(loss_val))
        epoch_loss.append(loss_val)
        # logging.info('loss_val: {}'.format(epoch_loss))
    metrics_values = {k: v[0] for k, v in metrics.items()}
    metrics_val = sess.run(metrics_values)
    expanded_metrics_val = get_expaned_metrics(metrics_val)
    metrics_string = " ; ".join("{}: {:05.4f}".format(k, v)
                                for k, v in expanded_metrics_val.items())
    logging.info("- Train metrics: " + metrics_string)
    return epoch_loss
Exemplo n.º 5
0
def train_initial_sess(sess, model_spec, num_steps, writer, params, \
    old_index, numbers_of_selections, sums_of_reward, arm_weights, max_upper_bound, old_loss_val):
    """Train the model on `num_steps` batches

    Args:
        sess: (tf.Session) current session
        model_spec: (dict) contains the graph operations or nodes needed for training
        num_steps: (int) train for this number of batches
        writer: (tf.summary.FileWriter) writer for summaries
        params: (Params) hyperparameters
    """
    # Get relevant graph operations or nodes needed for training

    loss = model_spec['loss']
    # train_op = model_spec['train_op']
    update_metrics = model_spec['update_metrics']
    metrics = model_spec['metrics']
    summary_op = model_spec['summary_op']
    # reward = model_spec['reward']
    global_step = tf.train.get_global_step()
    # Load the training dataset into the pipeline and initialize the metrics local variables
    # sess.run(model_spec['iterator_init_op'])
    sess.run(model_spec['metrics_init_op'])
    # Use tqdm for progress bar
    t = trange(int(num_steps))
    epoch_loss = []
    index = 0
    # for i in t:
    #     # Evaluate summaries for tensorboard only once in a while
    #     if i == params.save_summary_steps - 1:
    #     # if i % params.save_summary_steps == 0:
    #         # Perform a mini-batch update
    #         _, _, loss_val, summ, global_step_val = sess.run([train_op, update_metrics, loss,
    #                                                           summary_op, global_step])
    #         # Write summaries for tensorboard
    #         writer.add_summary(summ, global_step_val)
    #     else:
    #         _, _, loss_val = sess.run([train_op, update_metrics, loss])
    #     # Log the loss in the tqdm progress bar
    #     # t.set_postfix(loss='{:05.3f}'.format(loss_val))
    #     epoch_loss.append(loss_val)
    for i in t:
        # Evaluate summaries for tensorboard only once in a while
        if i == params.save_summary_steps - 1:
            # if i % params.save_summary_steps == 0:
            # Perform a mini-batch update
            _, loss_val, summ, global_step_val = sess.run(
                [update_metrics, loss, summary_op, global_step])
            # Write summaries for tensorboard
            writer.add_summary(summ, global_step_val)
        else:
            _, loss_val = sess.run([update_metrics, loss])
        # Log the loss in the tqdm progress bar
        # t.set_postfix(loss='{:05.3f}'.format(loss_val))
        epoch_loss.append(loss_val)
    #################################################################################
    if 'retrain' in params.loss_fn:
        # calculate the rewards of the (10) clusters --> pick and update the action variable
        global_vars = tf.get_collection(tf.GraphKeys.GLOBAL_VARIABLES,
                                        scope='model/rewards')
        action_var = [v for v in global_vars if 'action' in v.name][0]
        action_var_value = sess.run([action_var])
        # logging.info('****action_var at train_sess:\n {}'.format(action_var_value))
        # logging.info('*****old_index is {}, loss_val is {}'.format(old_index, loss_val))
        sums_of_reward[old_index] += loss_val - old_loss_val
        old_loss_val = loss_val
        index = old_index
        # index, numbers_of_selections, arm_weights, \
        # max_upper_bound =  rl_weights(params, numbers_of_selections, \
        #     sums_of_reward, max_upper_bound, \
        #     t, arm_weights)
        # logging.info('numbers_of_selections at i:\n {}'.format(numbers_of_selections))
        # total_reward += reward
        # index = 2
        assign_op = action_var.assign([index])
        sess.run(assign_op)
        action_var_value = sess.run([action_var])
        # logging.info('******updated action_var at train_sess:\n {}'.format(action_var_value))
    #################################################################################
    metrics_values = {k: v[0] for k, v in metrics.items()}
    metrics_val = sess.run(metrics_values)
    expanded_metrics_val = get_expaned_metrics(metrics_val)
    metrics_string = " ; ".join("{}: {:05.4f}".format(k, v)
                                for k, v in expanded_metrics_val.items())
    # logging.info("- Train metrics: " + metrics_string)
    # logging.info("-- Reward: \n")
    # logging.info(reward)
    return epoch_loss, index, sums_of_reward, arm_weights, max_upper_bound, old_loss_val
def evaluate_on_train_sess(sess, model_spec, num_steps, params=None):
    """Train the model on `num_steps` batches.

    Args:
        sess: (tf.Session) current session
        model_spec: (dict) contains the graph operations or nodes needed for training
        num_steps: (int) train for this number of batches
        writer: (tf.summary.FileWriter) writer for summaries. Is None if we don't log anything
        params: (Params) hyperparameters
    """
    update_metrics = model_spec['update_metrics']
    eval_metrics = model_spec['metrics']

    # global_step = tf.train.get_global_step()
    # Load the evaluation dataset into the pipeline and initialize the metrics init op
    # sess.run(model_spec['iterator_init_op'])
    sess.run(model_spec['metrics_init_op'])
    if params.save_predictions:
        # save the predictions and lable_qid to files
        prediction_list = []
        label_list = []
        # compute metrics over the dataset
        for temp_query_id in range(int(num_steps)):
            prediction_per_query, label_per_query, _ = sess.run([model_spec["predictions"], \
                model_spec["labels"], update_metrics])
            prediction_list.extend(
                [v[0] for v in prediction_per_query.tolist()])
            label_per_query_list = label_per_query.tolist()
            label_list.extend(['{} id:{}'.format(int(label_per_query_list[i][0]), \
                temp_query_id) \
                for i in range(0, len(label_per_query_list))])
        save_predictions_to_file(prediction_list, "./prediction_output")
        # tensorflow mess up test input orders
        save_predictions_to_file(label_list, "./label_output")
    else:
        # only update metrics
        for temp_query_id in range(int(num_steps)):
            # # masks_weights=[v for v in tf.trainable_variables() if 'model/mask' in v.name]
            # # # loss = eval_metrics['loss']
            # # # update_masks = [cal_gradient(loss, weight) for weight in masks_weights]
            # # sess.run(update_masks)
            # # sess.run(model_spec['masks'])
            # masks = sess.run(model_spec['masks'])
            # print('Printing masks')
            # print(masks)

            sess.run(model_spec['masks'])
            # mweights3_2=[v for v in tf.trainable_variables() if 'model/mask/mweights3_2' in v.name]
            # mweights3_2 = sess.run(mweights3_2)
            # print('Printing mweights3_2')
            # print(mweights3_2)
            sess.run(update_metrics)
    masks = [v for v in tf.trainable_variables() if 'model/mask' in v.name]
    update_masks = [tf.assign(nm, m/float(num_steps)) for (nm, m) in \
    zip(masks, masks)]
    sess.run(update_masks)

    # Get the values of the metrics
    metrics_values = {k: v[0] for k, v in eval_metrics.items()}
    metrics_val = sess.run(metrics_values)
    expanded_metrics_val = get_expaned_metrics(metrics_val)
    metrics_string = " ; ".join("{}: {:05.4f}".format(k, v)
                                for k, v in expanded_metrics_val.items())
    logging.info("- metrics on full train: " + metrics_string)
    return expanded_metrics_val