Exemplo n.º 1
0
                          cropped_size=o.opt.c_size,
                          transform=False,
                          input_images = [0,1,2])


#this and beat sum(120) are to use 120 long data set!
#data = torch.utils.data.Subset(data, range(120))

#beat = [8708,900,2403]
#beat = [90,10,20]

#traindata, valdata, testdata = torch.utils.data.random_split(data, beat)



octmodel = model.CapsNet(o.opt)
octmodel.to(o.opt.device)

if o.opt.loadcheckpoint:
    octmodel.load_state_dict(checkpoint['model_state_dict'])


#these are only used im home testing, when randomsubset samplers are on in test and train!!! 
setsize={'train':range(100),
         'val':range(20)}




if o.opt.train:
    sys.stdout.write('Starting Training... ' + '\n' + '\n')
Exemplo n.º 2
0
        sys.stdout.write('Mean ' + str(1-np.mean(self.col_losses1)) + '\n' + \
                         'Std ' + str(np.std(self.col_losses1)) + '\n' + \
                         'Min ' +str(1-np.max(self.col_losses1)) + '\n' + \
                         'Max ' + str(1-np.min(self.col_losses1)) + '\n')
        '''


data_dir = '/media/arjun/VascLab EVO/projects/oct_ca_seg/actual final data'

#path to whichever model you want. usually will live in a ehckpoint
checkpoint = torch.load(
    '/media/arjun/VascLab EVO/projects/oct_ca_seg/runsaves/Final1-pawsey/checkpoints/checkpoint.pt'
)
#checkpoint = torch.load('/group/pawsey0271/abalaji/projects/oct_ca_seg/run_saves/Final1-pawsey/checkpoints/checkpoint.pt')

model = m.CapsNet(o.opt)
model.load_state_dict(checkpoint['model_state_dict'])
model.to('cuda')

#this should be the testsamples from your loaded model
#testnames = os.listdir('/group/pawsey0271/abalaji/projects/oct_ca_seg/run_saves/Final1-pawsey/testsamples')
testnames = os.listdir(
    '/media/arjun/VascLab EVO/projects/oct_ca_seg/runsaves/Final1-pawsey/testsamples'
)

#this probs wont exist yet!!!
diceorderednames = np.load(
    '/media/arjun/VascLab EVO/projects/oct_ca_seg/runsaves/Final1-pawsey/analysis/diceordered.npy'
)

deploydata = DeployOCTDataset(data_dir, testnames)