def main(_): tfconfig = tf.ConfigProto(allow_soft_placement = True) tfconfig.gpu_options.allow_growth = True with tf.Session(config = tfconfig) as sess: model = cycleGAN(sess,FLAGS) if FLAGS.phase == 'train': print("Training ...") model.train(FLAGS)
def main(): args = get_args() create_link(args.dataset_dir) if args.training: print("Training") model = md.cycleGAN(args) model.train(args) if args.testing: print("Testing") tst.test(args)
def main(): args = get_args() create_link(args.dataset_dir) str_ids = args.gpu_ids.split(',') args.gpu_ids = [] for str_id in str_ids: id = int(str_id) if id >= 0: args.gpu_ids.append(id) print(not args.no_dropout) if args.training: print("Training") model = md.cycleGAN(args) model.train(args) if args.testing: print("Testing") model = md.cycleGAN(args) model.test(args)
def main(): args = get_args() create_link(args.dataset_dir) str_ids = args.gpu_ids.split(',') args.gpu_ids = [] for str_id in str_ids: id = int(str_id) if id >= 0: args.gpu_ids.append(id) print(not args.no_dropout) md = model.cycleGAN(args) md.train(args)
def main(args): create_link(args.dataset_dir) args.gpu_ids = [] for i in range(torch.cuda.device_count()): args.gpu_ids.append(i) if args.training: print('Training') model = md.cycleGAN(args) model.train(args) if args.gen_samples: print('Generating samples') gen_samples.gen_samples(args, 'last')
def main(_): """ global main method """ # input ('Main method will start , continue? press [Enter] to continue...') tfconfig = tf.ConfigProto(allow_soft_placement=True) tfconfig.gpu_options.allow_growth = True # tfconfig.gpu_options.per_process_gpu_memory_fraction = 0.9 sess = tf.InteractiveSession(config=tfconfig) gan = cycleGAN(sess, args) if args.is_train: gan.train(args) else: gan.test(args)