Exemplo n.º 1
0
def load_model(modelfile, config=None, args=None):
    if config.amp:
        from apex import amp
        if args.debug: print("Using apex amp")
    if modelfile == None:
        sys.stderr.write("No model file specified!")
        sys.exit(1)
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    if args.debug: print("Using device:", device)
    if args.arch is not None:
        model = network.network(config=config, arch=args.arch).to(device)
    else:
        model = network.network(config=config).to(device)
    if args.debug: print("Loading pretrained weights:", modelfile)
    state_dict = torch.load(modelfile)["state_dict"]
    if "state_dict" in state_dict:
        model.load_state_dict(convert_statedict(state_dict["state_dict"]))
    else:
        model.load_state_dict(torch.load(modelfile)["state_dict"])
    if args.debug: print(model)

    model.eval()
    torch.set_grad_enabled(False)
    optimizer = torch.optim.Adam(model.parameters(), lr=config.lr)
    if config.amp:
        model, optimizer = amp.initialize(model,
                                          optimizer,
                                          opt_level="O1",
                                          verbosity=0)
    return model, device
Exemplo n.º 2
0
def main(train_dir, batch_size, num_batches, log_dir, checkpoint_dir=None):
    if checkpoint_dir is None:
        checkpoint_dir = log_dir
    with tf.device('/cpu:0'):
        images, labels = build_input('cifar10', 100, 'test')
        images_cat_0, labels_cat_0 = build_input_cat_0('cifar10', 100, 'test')
        images_cat_1, labels_cat_1 = build_input_cat_1('cifar10', 100, 'test')

        predictions, total_loss, labels_cat2 = network(images, labels)
        predictions_cat_0, loss_0 = network(images_cat_0, labels_cat_0)
        predictions_cat_1, loss_1 = network(images_cat_1, labels_cat_1)

        tf.summary.scalar('loss', total_loss)
        tf.summary.scalar('loss_0', loss_0)
        tf.summary.scalar('loss_1', loss_1)

        predictions_cat_0 = tf.argmax(predictions_cat_0, axis=1)
        predictions_cat_1 = tf.argmax(predictions_cat_1, axis=1)
        predictions = tf.argmax(predictions, 1)
        tf.summary.scalar(
            'accuracy_cat_0',
            slim.metrics.accuracy(predictions_cat_0,
                                  tf.to_int64(labels_cat_0)))
        tf.summary.scalar(
            'accuracy_cat_1',
            slim.metrics.accuracy(predictions_cat_1,
                                  tf.to_int64(labels_cat_1)))
        tf.summary.scalar('accuracy_cat2',
                          slim.metrics.accuracy(predictions, labels_cat2))

        # These are streaming metrics which compute the "running" metric,
        # e.g running accuracy
        metrics_to_values, metrics_to_updates = slim.metrics.aggregate_metric_map(
            {
                'accuracy_cat2':
                slim.metrics.streaming_accuracy(predictions, labels_cat2),
                'accuracy_cat_0':
                slim.metrics.streaming_accuracy(predictions_cat_0,
                                                labels_cat_0),
                'accuracy_cat_1':
                slim.metrics.streaming_accuracy(predictions_cat_1,
                                                labels_cat_1),
            })

        # Define the streaming summaries to write:
        for metric_name, metric_value in metrics_to_values.items():
            tf.summary.scalar(metric_name, metric_value)

        # Evaluate every 30 seconds
        slim.evaluation.evaluation_loop('',
                                        checkpoint_dir,
                                        log_dir,
                                        num_evals=num_batches,
                                        eval_op=list(
                                            metrics_to_updates.values()),
                                        summary_op=tf.summary.merge_all(),
                                        eval_interval_secs=60,
                                        max_number_of_evaluations=100000000)
    def __init__(self, is_train=False):
        self.class_num = 5990
        self.character_step = 8
        self.character_height = 32
        self.character_width = 32

        #train
        self.train_tfrecords_name = "./make_tfrecords/data.tfrecords"
        self.summary_save_path = "./summary/"
        self.summary_steps = 10000
        self.save_steps = 10
        self.save_path = "./save/"

        #test:
        self.model_path = "./save/sliding_conv.ckpt-10"

        if is_train:
            self.batch_size = 16
            self.with_clip = True
            self.network = network(batch_size=self.batch_size,
                                   class_num=self.class_num,
                                   character_height=self.character_height,
                                   character_width=self.character_width,
                                   character_step=self.character_step,
                                   is_train=True)
        else:
            current_path = os.path.dirname(os.path.abspath(__file__))
            self.char_dict = self.create_char_dict(
                os.path.join(current_path, "char_std_5990.txt"))

            self.batch_size = 1
            self.graph = tf.Graph()
            gpu_options = tf.GPUOptions(per_process_gpu_memory_fraction=1.0)
            self.session = tf.Session(
                config=tf.ConfigProto(gpu_options=gpu_options),
                graph=self.graph)
            with self.session.as_default():
                with self.graph.as_default():
                    self.network = network(
                        batch_size=self.batch_size,
                        class_num=self.class_num,
                        character_height=self.character_height,
                        character_width=self.character_width,
                        character_step=self.character_step,
                        is_train=False)

                    self.decoded, self.log_prob = tf.nn.ctc_greedy_decoder(
                        self.network["outputs"],
                        self.network["seq_len"],
                        merge_repeated=True)

                    init = tf.global_variables_initializer()

                    self.session.run(init)
                    saver = tf.train.Saver(tf.global_variables(),
                                           max_to_keep=100)
                    saver.restore(self.session, self.model_path)
Exemplo n.º 4
0
    def __init__(self, state_size, action_size, lr=5e-4):
        self.action_size = action_size
        self.local_network = network(state_size, action_size)
        self.target_network = network(state_size, action_size)
        self.optimizer = opt.Adam(self.local_network.parameters(), lr=lr)

        self.memory = ReplayBuffer()
        self.eps = 1.0
        self.decay = 0.99
        self.eps_min = 0.01
        self.update_every = 4
        self.t_step = 1
        self.gamma = 0.99
        self.TAU = 1e-3
Exemplo n.º 5
0
def train(model_name):
    #Get the lables from the .env file
    labels = env('LABELS')
    size = int(env('IMG_SIZE'))
    #create the train data (format the training images)
    train_data = create_train_data()

    tf.reset_default_graph()

    convnet = network(size, labels)

    model = tflearn.DNN(convnet, tensorboard_dir='log')

    #if the model already exists, load it so we are not training from scratch
    if os.path.exists('{}.meta'.format(model_name)):
        model.load(model_name)
        print('model loaded!')

    X = np.array([i[0] for i in train_data]).reshape(-1, size, size, 1)
    Y = [i[1] for i in train_data]

    model.fit(X, Y, n_epoch=50)

    #save the model in the models folder
    model.save('../models/' + model_name)
    print("here")
    print(type(model))
    print("here")
    return model
Exemplo n.º 6
0
def main(train_dir, batch_size, num_batches, log_dir, checkpoint_dir=None):
    if checkpoint_dir is None:
        checkpoint_dir = log_dir

    images, labels = build_input('cifar10', 100, 'test')
    predictions, total_loss = network(images, labels)

    tf.summary.scalar('loss', total_loss)
    predictions = tf.to_int32(tf.argmax(predictions, 1))

    tf.summary.scalar('accuracy', slim.metrics.accuracy(predictions, labels))

    # These are streaming metrics which compute the "running" metric,
    # e.g running accuracy
    metrics_to_values, metrics_to_updates = slim.metrics.aggregate_metric_map({
        'accuracy':
        slim.metrics.streaming_accuracy(predictions, labels),
        'streaming_mse':
        slim.metrics.streaming_mean_squared_error(predictions, labels),
    })

    # Define the streaming summaries to write:
    for metric_name, metric_value in metrics_to_values.items():
        tf.summary.scalar(metric_name, metric_value)

    # Evaluate every 30 seconds
    slim.evaluation.evaluation_loop('',
                                    checkpoint_dir,
                                    log_dir,
                                    num_evals=num_batches,
                                    eval_op=list(metrics_to_updates.values()),
                                    summary_op=tf.summary.merge_all(),
                                    eval_interval_secs=20,
                                    max_number_of_evaluations=100000000)
Exemplo n.º 7
0
def main():
    data = CIFAR10(paths)
    data_loader = datautil.DataLoader(dataset=data,
                                      batch_size=512,
                                      num_workers=8,
                                      shuffle=True)
    epoch = 0
    net = network().to(device)
    criterion = nn.CrossEntropyLoss().to(device)
    optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
    running_loss = 0
    for ep in tqdm(range(epoch, 50)):
        for i, (image, label) in tqdm(enumerate(data_loader)):
            optimizer.zero_grad()
            # print (repr(image))
            output = net(image.to(device, dtype=torch.float32))
            # print(label)
            loss = criterion(output, label.to(device))
            loss.backward()
            optimizer.step()
            # running_loss += loss.item()
            if i % 2000 == 0:
                print(loss)
            pass
    torch.save(net.state_dict(), './model/model1.pt')
def main():
    parser = argparse.ArgumentParser()
    parser.add_argument('--epochs', default=100, type=int, help='epoch number')
    parser.add_argument('--start_epoch', default=0, type=int, help='start epoch number')
    parser.add_argument('-b', '--batch_size', default=4, type=int, help='mini-batch size')
    parser.add_argument('--lr', '--learning_rate', default=1e-4, type=float, help='initial learning rate')
    parser.add_argument('--weight-decay', default=0.0, type=float, help='weight decay')
    parser.add_argument('-c', '--continue', dest='continue_path', type=str, required=False)
    parser.add_argument('--exp_name', default=config.exp_name, type=str, required=False)
    parser.add_argument('--valid', action='store_true')
    parser.add_argument('--style_loss', action='store_true')
    args = parser.parse_args()
    print(args)

    config.exp_name = args.exp_name
    config.make_dir()

    save_args(args, config.log_dir)
    net = network()
    vgg = vgg_for_style_transfer()

    net = torch.nn.DataParallel(net).cuda()
    vgg = torch.nn.DataParallel(vgg).cuda()
    sess = Session(config, net=net)

    train_loader = get_dataloaders(os.path.join(config.data_dir, 'train.json'),
                                   batch_size=args.batch_size, shuffle=True)
    valid_loader = get_dataloaders(os.path.join(config.data_dir, 'val.json'),
                                   batch_size=args.batch_size, shuffle=True)

    if args.continue_path and os.path.exists(args.continue_path):
        sess.load_checkpoint(args.continue_path)

    clock = sess.clock
    tb_writer = sess.tb_writer

    criterion = nn.L1Loss().cuda()

    optimizer = optim.Adam(sess.net.parameters(), args.lr, weight_decay=args.weight_decay)

    scheduler = ReduceLROnPlateau(optimizer, 'min', factor=0.5, patience=10, verbose=True)

    for e in range(args.epochs):
        train_model(train_loader, sess.net, vgg,
                                criterion, optimizer, clock.epoch, tb_writer)
        valid_out = valid_model(valid_loader, sess.net, vgg,
                                criterion, optimizer, clock.epoch, tb_writer)

        tb_writer.add_scalar('train/learning_rate', optimizer.param_groups[-1]['lr'], clock.epoch)
        scheduler.step(valid_out['epoch_loss'])

        if valid_out['epoch_loss'] < sess.best_val_loss:
            sess.best_val_loss = valid_out['epoch_loss']
            sess.save_checkpoint('best_model.pth.tar')

        if clock.epoch % 10 == 0:
            sess.save_checkpoint('epoch{}.pth.tar'.format(clock.epoch))
        sess.save_checkpoint('latest.pth.tar')

        clock.tock()
Exemplo n.º 9
0
def main():

    tf.reset_default_graph()

    input_node = tf.placeholder(tf.float32,
                                shape=(24, 24,
                                       3))  #这个是你送入网络的图片大小,如果你是其他的大小自行修改
    input_node = tf.expand_dims(input_node, 0)
    flow = network(input_node)
    flow = tf.cast(flow, tf.uint8, 'out')  #设置输出类型以及输出的接口名字,为了之后的调用pb的时候使用

    saver = tf.train.Saver()
    with tf.Session() as sess:

        saver.restore(sess, model_path)

        #保存图
        tf.train.write_graph(sess.graph_def, 'output_model/pb_model',
                             'model.pb')
        #把图和参数结构一起
        freeze_graph.freeze_graph('output_model/pb_model/model.pb', '', False,
                                  model_path, 'out', 'save/restore_all',
                                  'save/Const:0',
                                  'output_model/pb_model/frozen_model.pb',
                                  False, "")

    print("done")
Exemplo n.º 10
0
def test(model_name):
    labels = env('LABELS')
    size = int(env('IMG_SIZE'))

    #format the images that are uploaded
    test_upload = process_test_data(env('TEST_UPLOAD'))

    convnet = network(size, labels)
    model = tflearn.DNN(convnet, tensorboard_dir='log')

    #load the model for testing
    model.load('models/' + model_name)

    for num, data in enumerate(test_upload):
        img_num = data[1]
        img_data = data[0]

        orig = img_data
        data = img_data.reshape(size, size, 1)
        model_out = model.predict([data])[0]

        print(model_out)
        print(np.argmax(model_out))

        str_label = labels[np.argmax(model_out)]

        #output as a text
        print(str_label)
Exemplo n.º 11
0
    def __init__(self, sess, s_size, a_size, scope, queues, trainer):
        self.queue = queues[0]
        self.param_queue = queues[1]
        self.replaymemory = ReplayMemory(100000)
        self.sess = sess
        self.learner_net = network(s_size, a_size, scope, 20)

        self.q = self.learner_net.q
        self.Q = self.learner_net.Q

        self.actions_q = tf.placeholder(shape=[None, a_size, N],
                                        dtype=tf.float32)
        self.q_target = tf.placeholder(shape=[None, N], dtype=tf.float32)
        self.ISWeights = tf.placeholder(shape=[None, N], dtype=tf.float32)

        self.q_actiona = tf.multiply(self.q, self.actions_q)
        self.q_action = tf.reduce_sum(self.q_actiona, axis=1)
        self.u = tf.abs(self.q_target - self.q_action)
        self.loss = tf.reduce_mean(
            tf.reduce_sum(tf.square(self.u) * self.ISWeights, axis=1))

        self.local_vars = self.learner_net.local_vars  #tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope)
        self.gradients = tf.gradients(self.loss, self.local_vars)
        #grads,self.grad_norms = tf.clip_by_norm(self.gradients,40.0)
        self.apply_grads = trainer.apply_gradients(
            zip(self.gradients, self.local_vars))
        self.sess.run(tf.global_variables_initializer())
Exemplo n.º 12
0
    def test_input(self):
        batch_size = 1

        # Mock input pipeline.
        mock_imgs = np.ones([batch_size, 32, 32, 1], dtype=np.float32)
        mock_edges = np.ones([batch_size, 32, 32, 1], dtype=np.float32)
        mock_interp = np.ones([batch_size, 32, 32, 1], dtype=np.float32)

        t_image = tf.placeholder(tf.float32,
                                 shape=(None, None, None, 1),
                                 name='t_input')
        t_interpolated = tf.placeholder(tf.float32,
                                        shape=(None, None, None, 1),
                                        name='t_input')
        t_edges = tf.placeholder(tf.float32,
                                 shape=(None, None, None, 1),
                                 name='t_input')
        d_flg = tf.placeholder(tf.bool, name='is_train')

        net_g = network(t_image, t_edges, is_train=d_flg)

        sess = tf.InteractiveSession()
        sess.run(tf.global_variables_initializer())
        result = sess.run(net_g,
                          feed_dict={
                              t_image: mock_imgs,
                              t_interpolated: mock_interp,
                              t_edges: mock_edges,
                              d_flg: False
                          })
        print(result.shape)
Exemplo n.º 13
0
def test(args, shared_model, inputs, labels, log):
    start_time = time.time()
    local_model = model.network(args,
                                class_num=args.class_num,
                                input_dim=inputs.shape[1])
    local_model.load_state_dict(shared_model.state_dict())
    if args.gpu:
        local_model = local_model.cuda()

    outputs = local_model(inputs)
    predict_labels = torch.argmax(outputs, dim=1)
    if args.gpu:
        predict_labels = predict_labels.cpu()
    predict_labels = predict_labels.numpy()
    cnt = 0

    if args.gpu:
        labels = labels.cpu()
    labels = labels.numpy()
    for i in range(labels.shape[0]):
        if predict_labels[i] == labels[i]:
            cnt += 1
    accuracy = cnt / labels.shape[0]
    f1 = f1_score(list(labels), list(predict_labels), average='macro')

    log.info('Test time ' + \
                   time.strftime("%Hh %Mm %Ss", time.gmtime(time.time() - start_time)) + \
                   ',f1: %0.4f\t accuracy: %0.4f' % (f1, 100* accuracy))

    return accuracy, f1
Exemplo n.º 14
0
def build_program(main_prog, startup_prog, args):
    image_shape = [int(m) for m in args.image_shape.split(",")]
    with fluid.program_guard(main_prog, startup_prog):
        with fluid.unique_name.guard():
            image = fluid.data(
                name="image", shape=[None] + image_shape, dtype="float32")
            label = fluid.data(name="label", shape=[None, 1], dtype="int64")
            genotype = eval("genotypes.%s" % args.arch)
            drop_path_prob = ''
            drop_path_mask = ''
            do_drop_path = False
            logits, logits_aux = network(
                x=image,
                is_train=False,
                c_in=args.init_channels,
                num_classes=args.class_num,
                layers=args.layers,
                auxiliary=False,
                genotype=genotype,
                do_drop_path=do_drop_path,
                drop_prob=drop_path_prob,
                drop_path_mask=drop_path_mask,
                args=args,
                name='model')
            top1 = fluid.layers.accuracy(input=logits, label=label, k=1)
            top5 = fluid.layers.accuracy(input=logits, label=label, k=5)
            loss = fluid.layers.reduce_mean(
                fluid.layers.softmax_with_cross_entropy(logits, label))
            outs = [loss, top1, top5]
    return outs
Exemplo n.º 15
0
def load_check_point(train_id, path=None):
    """
    """
    if path is None:
        path = os.getcwd()

    param_fn = os.path.join(path, str(train_id) + '.param.npz')
    config_fn = os.path.join(path, str(train_id) + '.nnconfig.gz')
    params = joblib.load(config_fn)
    mdl, net = build(network(params), params)
    layers = L.get_all_layers(L.ConcatLayer(net.values(), axis=1))

    if os.path.exists(param_fn):
        try:
            print('Loadong pre-trained weight...')
            with np.load(param_fn) as f:
                param_values = [f['arr_%d' % i] for i in range(len(f.files))]
            L.set_all_param_values(layers, param_values)
        except Exception as e:
            print(e)
            print('Cannot load parameters!')
    else:
        print('Cannot find parameters!')

    return net, mdl, params
Exemplo n.º 16
0
def main():
    args = get_arguments()

    num_classes = dataset_settings[args.dataset]['num_classes']
    input_size = dataset_settings[args.dataset]['input_size']
    label = dataset_settings[args.dataset]['label']

    model = network(num_classes=num_classes, pretrained=None).cuda()
    model = nn.DataParallel(model)
    state_dict = torch.load(args.restore_weight)
    model.load_state_dict(state_dict)
    model.eval()

    transform = transforms.Compose([
        transforms.ToTensor(),
        transforms.Normalize(mean=[0.406, 0.456, 0.485], std=[0.225, 0.224, 0.229])
    ])
    dataset = SCHPDataset(root=args.input, input_size=input_size, transform=transform)
    dataloader = DataLoader(dataset)

    if not os.path.exists(args.output):
        os.makedirs(args.output)

    palette = get_palette(num_classes)

    with torch.no_grad():
        for idx, batch in enumerate(dataloader):

            image, meta = batch
            img_name = meta['name'][0]
            c = meta['center'].numpy()[0]
            s = meta['scale'].numpy()[0]
            w = meta['width'].numpy()[0]
            h = meta['height'].numpy()[0]

            output = model(image.cuda())
            upsample = torch.nn.Upsample(size=input_size, mode='bilinear', align_corners=True)
            upsample_output = upsample(output)
            upsample_output = upsample_output.squeeze()
            upsample_output = upsample_output.permute(1, 2, 0) #CHW -> HWC

            logits_result = transform_logits(upsample_output.data.cpu().numpy(), c, s, w, h, input_size=input_size)
            parsing_result = np.argmax(logits_result, axis=2)

            parsing_result_path = os.path.join(args.output, img_name[:-4]+'.png')
            # plt.imshow(parsing_result)
            # plt.show()

            output_img = Image.fromarray(np.asarray(parsing_result, dtype=np.uint8))
            output_img.putpalette(palette)
            output_img.save(parsing_result_path)

            if args.logits:
                #logits_result_path = os.path.join(args.output, img_name[:-4] + '.npy')
                np_result_path = os.path.join(args.output, img_name[:-4] + '.npy')

                #np.save(logits_result_path, logits_result)
                np.save(np_result_path, parsing_result)
    return
Exemplo n.º 17
0
def main(_):
    config = tf.ConfigProto(device_count={'GPU': 0})
    with tf.Session(config=config) as sess:
        model = network(sess, args)
        if args.phase == 'train':
            model.train(args)
        else:
            model.test(args)
Exemplo n.º 18
0
def export():
    tf.logging.set_verbosity(tf.logging.INFO)
    nn = network()
    inp = tf.placeholder(tf.float32, [None], name=INPUT_TENSOR_NAME)
    inp = tf.reshape(inp, [-1, CROPPED_IMAGE_SIZE, CROPPED_IMAGE_SIZE, 3])
    td = dict(input=inp)
    nn.export_savedmodel(
        EXPORT_FOLDER,
        tf.estimator.export.build_raw_serving_input_receiver_fn(td))
Exemplo n.º 19
0
def act(state, checkpoint):
    state = torch.from_numpy(state).float().unsqueeze(0)
    model = network(37, 4)
    model.load_state_dict(torch.load(checkpoint))
    model.eval()
    with torch.no_grad():
        action = model(state)
    action = np.argmax(action.numpy())
    return action
Exemplo n.º 20
0
def main(train_dir, batch_size, num_batches, log_dir):

    images, labels = build_input('cifar10', 100, 'train')
    predictions, total_loss = network(images, labels)

    tf.summary.scalar('loss', total_loss)
    optimizer = tf.train.GradientDescentOptimizer(0.1)
    train_op = slim.learning.create_train_op(total_loss, optimizer, summarize_gradients=True)

    slim.learning.train(train_op, log_dir, save_summaries_secs=20, save_interval_secs=20)
Exemplo n.º 21
0
    def __init__(self, sess, env, name, s_size, a_size, queues):
        self.name = "worker_" + str(name)
        self.number = name
        self.sess = sess
        self.Actor_net = network(s_size, a_size, self.name)
        self.env = env

        self.queue = queues[0]
        self.param_queue = queues[1]
        self.sess.run(tf.global_variables_initializer())
Exemplo n.º 22
0
def act(state, checkpoint, num_agents):
    actions = []
    for i in range(num_agents):
        state_tensor = torch.from_numpy(state[i]).float()
        model = network(33, 4)
        model.load_state_dict(torch.load(checkpoint))
        model.eval()
        with torch.no_grad():
            action = model(state_tensor).data.numpy()
        actions.append(action)
    return actions
Exemplo n.º 23
0
 def save_weights_for_DeepSVDD(self, model, dataloader):
     """Initialize Deep SVDD weights using the encoder weights of the pretrained autoencoder."""
     c = self.set_c(model, dataloader)
     net = network(self.args.latent_dim).to(self.device)
     state_dict = model.state_dict()
     net.load_state_dict(state_dict, strict=False)
     torch.save(
         {
             'center': c.cpu().data.numpy().tolist(),
             'net_dict': net.state_dict()
         }, 'weights/pretrained_parameters.pth')
Exemplo n.º 24
0
def ex(net, learning_rate, split, epsilon, beta, dur,
       n_epochs, targets, batch_sz, shuffle, data_path,
       overlap_chunk=True, kernel_multiplier=1, train_id=None):
    """"""
    if train_id is None:
        train_id = uuid.uuid4()

    logger = tblog.Logger('runs/{}'.format(train_id))

    params = {
        'network': net,
        'data_fn': os.path.join(data_path, 'train.h5'),
        'scaler': SCALER_FN,
        'split_fn': split,
        'learning_rate': learning_rate,
        'epsilon': epsilon,
        'beta': beta,
        'verbose': True,
        'n_epochs': n_epochs,
        'batch_sz': batch_sz,
        'dur': dur,  # frames
        'overlap_chunk': True if overlap_chunk else False,
        'kernel_multiplier': kernel_multiplier,
        'report_every': 100,
        'class_weight': False,
        'prepare_submission': False,
        'iter': 0
    }
    params['targets'] = targets

    with h5py.File(params['data_fn']) as hf:
        # load split info
        split = joblib.load(params['split_fn'])
        params.update(
            {'split': {k: map(int, v) for k, v in split.iteritems()}})

        # load class weight if needed
        if params['class_weight']:
            params.update(
                {'class_weight': get_class_weight(hf['y'][:])}
            )

        mdl, net = build(network(params), params)
        train(mdl, hf, params, shuffle, logger)
        save_check_point(net, params, train_id, path='results/')
        f1, ll = evaluate(mdl, hf, params)

        if params['prepare_submission']:
            # predict test dataset and prepare submission
            test(mdl, hf, train_id,
                 os.path.join(data_path, 'test.h5'), params)

    return train_id, f1, ll
Exemplo n.º 25
0
def main(train_dir, batch_size, num_batches, log_dir):

    images, labels = build_input('cifar10', 100, 'train')
    images_cat_0, labels_cat_0 = build_input_cat_0('cifar10', 100, 'test')
    images_cat_1, labels_cat_1 = build_input_cat_1('cifar10', 100, 'test')

    predictions, total_loss, labels_cat2 = network(images, labels)
    predictions_cat_0, loss_0, labels_cat_0_ = network(images_cat_0,
                                                       labels_cat_0)
    predictions_cat_1, loss_1, labels_cat_1_ = network(images_cat_1,
                                                       labels_cat_1)

    report()

    tf.summary.scalar('loss', total_loss)
    tf.summary.scalar('loss_0', loss_0)
    tf.summary.scalar('loss_1', loss_1)

    predictions = tf.argmax(predictions, axis=1)
    predictions_cat_0 = tf.argmax(predictions_cat_0, axis=1)
    predictions_cat_1 = tf.argmax(predictions_cat_1, axis=1)
    tf.summary.scalar(
        'accuracy', slim.metrics.accuracy(predictions,
                                          tf.to_int64(labels_cat2)))
    tf.summary.scalar(
        'accuracy_cat_0',
        slim.metrics.accuracy(predictions_cat_0, tf.to_int64(labels_cat_0_)))
    tf.summary.scalar(
        'accuracy_cat_1',
        slim.metrics.accuracy(predictions_cat_1, tf.to_int64(labels_cat_1_)))

    optimizer = tf.train.GradientDescentOptimizer(0.1)
    train_op = slim.learning.create_train_op(total_loss,
                                             optimizer,
                                             summarize_gradients=True)

    slim.learning.train(train_op,
                        log_dir,
                        save_summaries_secs=20,
                        save_interval_secs=20)
Exemplo n.º 26
0
def build_program(main_prog, startup_prog, is_train, args):
    image_shape = [int(m) for m in args.image_shape.split(",")]
    with fluid.program_guard(main_prog, startup_prog):
        with fluid.unique_name.guard():
            image = fluid.data(name="image",
                               shape=[None] + image_shape,
                               dtype="float32")
            label = fluid.data(name="label", shape=[None, 1], dtype="int64")
            data_loader = fluid.io.DataLoader.from_generator(
                feed_list=[image, label],
                capacity=64,
                use_double_buffer=True,
                iterable=True)
            genotype = eval("genotypes.%s" % args.arch)
            logits, logits_aux = network(x=image,
                                         is_train=is_train,
                                         c_in=args.init_channels,
                                         num_classes=args.class_num,
                                         layers=args.layers,
                                         auxiliary=args.auxiliary,
                                         genotype=genotype,
                                         name='model')
            top1 = fluid.layers.accuracy(input=logits, label=label, k=1)
            top5 = fluid.layers.accuracy(input=logits, label=label, k=5)
            loss = fluid.layers.reduce_mean(
                cross_entropy_label_smooth(logits, label, args.label_smooth))
            if is_train:
                if args.auxiliary:
                    loss_aux = fluid.layers.reduce_mean(
                        cross_entropy_label_smooth(logits_aux, label,
                                                   args.label_smooth))
                    loss = loss + args.auxiliary_weight * loss_aux
                step_per_epoch = int(args.trainset_num / args.batch_size)
                learning_rate = fluid.layers.exponential_decay(
                    args.learning_rate,
                    step_per_epoch,
                    args.decay_rate,
                    staircase=True)
                clip = fluid.clip.GradientClipByGlobalNorm(
                    clip_norm=args.grad_clip)
                optimizer = fluid.optimizer.MomentumOptimizer(
                    learning_rate,
                    args.momentum,
                    regularization=fluid.regularizer.L2DecayRegularizer(
                        args.weight_decay),
                    grad_clip=clip)
                optimizer.minimize(loss)
                outs = [loss, top1, top5, learning_rate]
            else:
                outs = [loss, top1, top5]
    return outs, data_loader
Exemplo n.º 27
0
def test(test_dir, checkpoint_dir='./checkpoint_res50/'):
    # predict the result
    test_images = os.listdir(test_dir)
    features = tf.placeholder(
        "float32",
        shape=[None, CROP_SIZE, CROP_SIZE, IMAGE_CHANNEL],
        name="features")
    labels = tf.placeholder("float32", [None], name="labels")
    is_training = tf.placeholder("bool")
    one_hot_labels = tf.one_hot(indices=tf.cast(labels, tf.int32), depth=80)

    net = model.network(NUM_CLASS, model_name, use_batch_norm=use_bn)
    logits = net.inference(inputs=features,
                           is_training=is_training,
                           reuse=False)
    values, indices = tf.nn.top_k(logits, 3)

    with tf.Session() as sess:
        saver = tf.train.Saver()
        ckpt = tf.train.get_checkpoint_state(checkpoint_dir)
        if ckpt and ckpt.model_checkpoint_path:
            print('Restore the model from checkpoint %s' %
                  ckpt.model_checkpoint_path)
            # Restores from checkpoint
            saver.restore(sess, ckpt.model_checkpoint_path)
            start_step = int(
                ckpt.model_checkpoint_path.split('/')[-1].split('-')[-1])
        else:
            raise Exception('no checkpoint find')

        result = []
        for test_image in test_images:
            temp_dict = {}
            x = scene_input.img_resize(os.path.join(test_dir, test_image),
                                       CROP_SIZE)
            indices_eval = sess.run(indices,
                                    feed_dict={
                                        features: np.expand_dims(x, axis=0),
                                        is_training: False
                                    })
            predictions = np.squeeze(indices_eval)
            temp_dict['image_id'] = test_image
            temp_dict['label_id'] = predictions.tolist()
            result.append(temp_dict)
            print('image %s is %d,%d,%d' %
                  (test_image, predictions[0], predictions[1], predictions[2]))

        with open('submit.json', 'w') as f:
            json.dump(result, f)
            print('write result json, num is %d' % len(result))
Exemplo n.º 28
0
def make_optimal_network(deep_load=False, load_black=True):
    _, routes = load_airport_and_route(deep_load=deep_load)
    netx = from_edgelist(routes)
    N = number_of_nodes(netx)
    net = network(N, graph=netx)

    optimal = optimal_distribution(deep_load=deep_load)
    R = B = [balls_per_node] * N
    if load_black:
        B = optimal
    else:
        R = optimal

    net.set_initial_distribution(R, B)
Exemplo n.º 29
0
def show_results(network, features, labels, examples=4):
    figure, axis = plt.subplots(nrows=4, ncols=4, figsize=(15, 4 * examples))
    dim1 = features.shape[0]
    for row in range(examples):
        img_idx = np.random.randint(dim1)
        image_array = network(
            mx.nd.array(features[img_idx:img_idx + 1],
                        ctx=context).astype('float32')).squeeze(0).asnumpy()
        axis[row][0].imshow(
            np.transpose(features[img_idx], (1, 2, 0))[:, :, 0])
        axis[row][1].imshow(np.transpose(image_array, (1, 2, 0))[:, :, 0])
        axis[row][2].imshow(image_array.argmax(0))
        axis[row][3].imshow(np.transpose(labels[img_idx], (1, 2, 0))[:, :, 0])
    plt.show()
Exemplo n.º 30
0
    def test_build_graph(self):
        ###========================== DEFINE MODEL ============================###
        t_image = tf.placeholder(tf.float32,
                                 shape=(None, 32, 32, 1),
                                 name='t_input')
        t_interpolated = tf.placeholder(tf.float32,
                                        shape=(None, 32, 32, 1),
                                        name='t_input')
        t_edges = tf.placeholder(tf.float32,
                                 shape=(None, 32, 32, 1),
                                 name='t_input')
        d_flg = tf.placeholder(tf.bool, name='is_train')

        net_g = network(t_image, t_edges, t_interpolated, is_train=d_flg)
        print('out', net_g.shape)