def main(): # Input parameters INPUT_SHAPE = (123, 123, 3) # Set working directory where files are located workingDirectory = "C:\\Users\\Dillon\\Desktop\\Senior_Project" trainingImgsPath = workingDirectory + "\\training_Images" idDictPath = workingDirectory + "\\data\\data_points.geojson" x_train, y_train = makeBatch(idDictPath, trainingImgsPath) testIdDictPath = workingDirectory + "\\data\\test_data_points.geojson" testingImgsPath = workingDirectory + "\\testing_Images" x_test, y_test = makeBatch(testIdDictPath, testingImgsPath) print("Batches made\nInitializing model...") # model = initModel(0.5, INPUT_SHAPE) # train(model, # x_train, # y_train, # num_samples=20000, # batch_size=128, # learningRate = 5e-5, # epochs=100) runModel(workingDirectory, x_test, y_test, x_train, y_train)
def model(self): try: if (int(self.e2.get())) > self.df.shape[0] or (int( self.e2.get())) < 3: messagebox.showerror( "K Mean Clustring", "please enter a valid number of clusters") else: try: if (int(self.e3.get())) > 50 or (int(self.e3.get())) < 1: messagebox.showerror( "K Mean Clustring", "please enter a valid number of runs") else: try: # self.master.button1['state'] = 'normal' model.runModel(self.df, int(self.e2.get()), int(self.e3.get())) self.img = ImageTk.PhotoImage( PIL.Image.open("countries.png")) self.panel = Label(self.master, image=self.img) self.panel.grid(row=8, column=0) self.img1 = ImageTk.PhotoImage( PIL.Image.open( "Generosity_social_support.png")) self.panel = Label(self.master, image=self.img1) self.panel.grid(row=8, column=1) messagebox.showinfo( "K Mean Clustring", "clustring completed successfully!") except: messagebox.showerror("K Mean Clustring", "error while the model") except: messagebox.showerror( "K Mean Clustring", "please enter a valid number of runs") except: messagebox.showerror("K Mean Clustring", "please enter a valid number of clusters")
def analysis(): print "Running Model...." Alz = model.runModel() print "Running Model" if ('username' not in session): session ['username'] = None if (session.get('username') == None): username = session ['username'] results = request.args.get("Results") if (results == "Results"): return redirect("/results") return render_template("analysis.html")
def train(self, tfrecord_filename, begin=0, einde=1000): print("Start training with data") print("Image Height: %d, Width: %d, Channels: %d" % (self.height, self.width, self.channels)) T2 = imagesToTfRecord(tfrecord_filename, TRAIN_DIR, TRAIN_LABELS, self.width, self.height, self.channels) if os.path.exists(tfrecord_filename): """ Read images and labels (tensors) from TFRecord file """ parsed_image_dataset = T2.readRecord(tfrecord_filename) print(parsed_image_dataset) #for parsed_record in parsed_image_dataset.take(5): #print("parsed_record: ", repr(parsed_record)) #labels = parsed_record[1][0] parsed_image_dataset.batch(32) iterator = parsed_image_dataset.make_one_shot_iterator() image_ds, label_ds = iterator.get_next() test_images, test_labels = image_ds, label_ds # print("iterator: ", iterator) runModel(image_ds, label_ds, test_images, test_labels) else: print("File does not exist: ", tfrecord_filename)
with open(modelFilename, 'rb') as inputFile, open(os.path.join(outputDirectory, MODEL_FILENAME), 'wb') as outputFile: outputFile.write(inputFile.read()) with open(os.path.join(outputDirectory, SCORE_FILENAME), 'w')as outputFile: outputFile.write("%f\n" % score) if __name__ == '__main__': experimentIndex = 0 for configuration in ConfigurationStore.getTestConfigurationFiles(): experimentIndex += 1 with open(CONFIG_FILENAME,'w') as configFile: configFile.write(configuration) import model as ModelTrainer score = ModelTrainer.runModel(MODEL_FILENAME) saveExperimentResults(experimentIndex, CONFIG_FILENAME, MODEL_FILENAME, score) if os.path.isfile(CONFIG_FILENAME): os.remove(CONFIG_FILENAME) if os.path.isfile(MODEL_FILENAME): os.remove(MODEL_FILENAME) del ModelTrainer
selectedFeatures = df[[ "CashIn", "CashOut", "Weekday", "DayOfMonth", "yearlyDeviation", "yearlyDeviationChange", "workingDayOrNot", "Season", "isReligiousHoliday", "isNationalHoliday", "isSpecialDay" ]] # "previousWeekCashInAvg", # "previousWeekCashInStdDev" categoricalFeatureNameList = list( selectedFeatures.select_dtypes(exclude=["number", "datetime"])) categoricalFeatureIndexList = [ selectedFeatures.columns.get_loc(c) for c in categoricalFeatureNameList ] scaledArray = model.preprocessModelDf(selectedFeatures, categoricalFeatureIndexList) model_, history, test_X, test_y, prediction_values = model.runModel( scaledArray, n_features, n_days_to_feed_model, n_days_to_predict, cash_in) model.plotLossHistory(history) rmse = model.makePrediction(test_X, test_y, prediction_values, model_) print("rmse : {}".format(rmse)) except Exception as e: errorLog = str(traceback.format_exc()) print(errorLog)