def train_val_model(pipeline_cfg, model_cfg, train_cfg): data_pipeline = DataPipeline(**pipeline_cfg) device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") if model_cfg['cxt_emb_pretrained'] is not None: model_cfg['cxt_emb_pretrained'] = torch.load( model_cfg['cxt_emb_pretrained']) bidaf = BiDAF(word_emb=data_pipeline.word_type.vocab.vectors, **model_cfg) ema = EMA(train_cfg['exp_decay_rate']) for name, param in bidaf.named_parameters(): if param.requires_grad: ema.register(name, param.data) parameters = filter(lambda p: p.requires_grad, bidaf.parameters()) optimizer = optim.Adadelta(parameters, lr=train_cfg['lr']) criterion = nn.CrossEntropyLoss() result = {'best_f1': 0.0, 'best_model': None} num_epochs = train_cfg['num_epochs'] for epoch in range(1, num_epochs + 1): print('Epoch {}/{}'.format(epoch, num_epochs)) print('-' * 10) for phase in ['train', 'val']: val_answers = dict() val_f1 = 0 val_em = 0 val_cnt = 0 val_r = 0 if phase == 'train': bidaf.train() else: bidaf.eval() backup_params = EMA(0) for name, param in bidaf.named_parameters(): if param.requires_grad: backup_params.register(name, param.data) param.data.copy_(ema.get(name)) with torch.set_grad_enabled(phase == 'train'): for batch_num, batch in enumerate( data_pipeline.data_iterators[phase]): optimizer.zero_grad() p1, p2 = bidaf(batch) loss = criterion(p1, batch.s_idx) + criterion( p2, batch.e_idx) if phase == 'train': loss.backward() optimizer.step() for name, param in bidaf.named_parameters(): if param.requires_grad: ema.update(name, param.data) if batch_num % train_cfg['batch_per_disp'] == 0: batch_loss = loss.item() print('batch %d: loss %.3f' % (batch_num, batch_loss)) if phase == 'val': batch_size, c_len = p1.size() val_cnt += batch_size ls = nn.LogSoftmax(dim=1) mask = (torch.ones(c_len, c_len) * float('-inf')).to(device).tril(-1). \ unsqueeze(0).expand(batch_size, -1, -1) score = (ls(p1).unsqueeze(2) + ls(p2).unsqueeze(1)) + mask score, s_idx = score.max(dim=1) score, e_idx = score.max(dim=1) s_idx = torch.gather(s_idx, 1, e_idx.view(-1, 1)).squeeze() for i in range(batch_size): answer = (s_idx[i], e_idx[i]) gt = (batch.s_idx[i], batch.e_idx[i]) val_f1 += f1_score(answer, gt) val_em += exact_match_score(answer, gt) val_r += r_score(answer, gt) if phase == 'val': val_f1 = val_f1 * 100 / val_cnt val_em = val_em * 100 / val_cnt val_r = val_r * 100 / val_cnt print('Epoch %d: %s f1 %.3f | %s em %.3f | %s rouge %.3f' % (epoch, phase, val_f1, phase, val_em, phase, val_r)) if val_f1 > result['best_f1']: result['best_f1'] = val_f1 result['best_em'] = val_em result['best_model'] = copy.deepcopy(bidaf.state_dict()) torch.save(result, train_cfg['ckpoint_file']) # with open(train_cfg['val_answers'], 'w', encoding='utf-8') as f: # print(json.dumps(val_answers), file=f) for name, param in bidaf.named_parameters(): if param.requires_grad: param.data.copy_(backup_params.get(name))
class SOLVER(): def __init__(self, args): self.args = args self.device = torch.device("cuda:{}".format(self.args.GPU) if torch. cuda.is_available() else "cpu") self.data = READ(self.args) glove = self.data.WORD.vocab.vectors char_size = len(self.data.CHAR.vocab) self.model = BiDAF(self.args, char_size, glove).to(self.device) self.optimizer = optim.Adadelta(self.model.parameters(), lr=self.args.Learning_Rate) self.ema = EMA(self.args.Exp_Decay_Rate) if APEX_AVAILABLE: # Mixed Precision self.model, self.optimizer = amp.initialize(self.model, self.optimizer, opt_level='O2') for name, param in self.model.named_parameters(): if param.requires_grad: self.ema.register(name, param.data) self.parameters = filter(lambda p: p.requires_grad, self.model.parameters()) def train(self): criterion = nn.NLLLoss() criterion = criterion.to(self.device) self.model.train() max_dev_em, max_dev_f1 = -1, -1 num_batches = len(self.data.train_iter) logging.info("Begin Training") self.model.zero_grad() loss = 0.0 for epoch in range(self.args.Epoch): self.model.train() for i, batch in enumerate(self.data.train_iter): i += 1 p1, p2 = self.model(batch) batch_loss = criterion( p1, batch.start_idx.to(self.device)) + criterion( p2, batch.end_idx.to(self.device)) if APEX_AVAILABLE: with amp.scale_loss(batch_loss, self.optimizer) as scaled_loss: scaled_loss.backward() else: batch_loss.backward() loss = batch_loss.item() self.optimizer.step() del p1, p2, batch_loss for name, param in self.model.named_parameters(): if param.requires_grad: self.ema.update(name, param.data) self.model.zero_grad() logging.info("Epoch [{}/{}] Step [{}/{}] Train Loss {}".format(epoch+1, self.args.Epoch, \ i, int(num_batches) +1, round(loss,3))) if epoch > 7: if i % 100 == 0: dev_em, dev_f1 = self.evaluate() logging.info("Epoch [{}/{}] Dev EM {} Dev F1 {}".format(epoch + 1, self.args.Epoch, \ round(dev_em,3), round(dev_f1,3))) self.model.train() if dev_f1 > max_dev_f1: max_dev_f1 = dev_f1 max_dev_em = dev_em dev_em, dev_f1 = self.evaluate() logging.info("Epoch [{}/{}] Dev EM {} Dev F1 {}".format(epoch + 1, self.args.Epoch, \ round(dev_em,3), round(dev_f1,3))) self.model.train() if dev_f1 > max_dev_f1: max_dev_f1 = dev_f1 max_dev_em = dev_em logging.info('Max Dev EM: {} Max Dev F1: {}'.format( round(max_dev_em, 3), round(max_dev_f1, 3))) def evaluate(self): logging.info("Evaluating on Dev Dataset") answers = dict() self.model.eval() temp_ema = EMA(0) for name, param in self.model.named_parameters(): if param.requires_grad: temp_ema.register(name, param.data) param.data.copy_(self.ema.get(name)) with torch.no_grad(): for _, batch in enumerate(self.data.dev_iter): p1, p2 = self.model(batch) batch_size, _ = p1.size() _, s_idx = p1.max(dim=1) _, e_idx = p2.max(dim=1) for i in range(batch_size): qid = batch.qid[i] answer = batch.c_word[0][i][s_idx[i]:e_idx[i] + 1] answer = ' '.join( [self.data.WORD.vocab.itos[idx] for idx in answer]) answers[qid] = answer for name, param in self.model.named_parameters(): if param.requires_grad: param.data.copy_(temp_ema.get(name)) results = evaluate(self.args, answers) return results['exact_match'], results['f1']
def eval(context, question): with open(os.path.join(config.data_dir, "train", "word2idx.pkl"), "rb") as wi, \ open(os.path.join(config.data_dir, "train", "char2idx.pkl"), "rb") as ci, \ open(os.path.join(config.data_dir, "train", "word_embeddings.pkl"), "rb") as wb, \ open(os.path.join(config.data_dir, "train", "char_embeddings.pkl"), "rb") as cb: word2idx = pickle.load(wi) char2idx = pickle.load(ci) word_embedding_matrix = pickle.load(wb) char_embedding_matrix = pickle.load(cb) # transform them into Tensors word_embedding_matrix = torch.from_numpy( np.array(word_embedding_matrix)).type(torch.float32) char_embedding_matrix = torch.from_numpy( np.array(char_embedding_matrix)).type(torch.float32) idx2word = dict([(y, x) for x, y in word2idx.items()]) context = clean_text(context) context = [w for w in word_tokenize(context) if w] question = clean_text(question) question = [w for w in word_tokenize(question) if w] if len(context) > config.max_len_context: print("The context is too long. Maximum accepted length is", config.max_len_context, "words.") if max([len(w) for w in context]) > config.max_len_word: print("Some words in the context are longer than", config.max_len_word, "characters.") if len(question) > config.max_len_question: print("The question is too long. Maximum accepted length is", config.max_len_question, "words.") if max([len(w) for w in question]) > config.max_len_word: print("Some words in the question are longer than", config.max_len_word, "characters.") if len(question) < 3: print( "The question is too short. It needs to be at least a three words question." ) context_idx = np.zeros([config.max_len_context], dtype=np.int32) question_idx = np.zeros([config.max_len_question], dtype=np.int32) context_char_idx = np.zeros([config.max_len_context, config.max_len_word], dtype=np.int32) question_char_idx = np.zeros( [config.max_len_question, config.max_len_word], dtype=np.int32) # replace 0 values with word and char IDs for j, word in enumerate(context): if word in word2idx: context_idx[j] = word2idx[word] else: context_idx[j] = 1 for k, char in enumerate(word): if char in char2idx: context_char_idx[j, k] = char2idx[char] else: context_char_idx[j, k] = 1 for j, word in enumerate(question): if word in word2idx: question_idx[j] = word2idx[word] else: question_idx[j] = 1 for k, char in enumerate(word): if char in char2idx: question_char_idx[j, k] = char2idx[char] else: question_char_idx[j, k] = 1 model = BiDAF(word_vectors=word_embedding_matrix, char_vectors=char_embedding_matrix, hidden_size=config.hidden_size, drop_prob=config.drop_prob) try: if config.cuda: model.load_state_dict( torch.load(os.path.join(config.squad_models, "model_final.pkl"))["state_dict"]) else: model.load_state_dict( torch.load( os.path.join(config.squad_models, "model_final.pkl"), map_location=lambda storage, loc: storage)["state_dict"]) print("Model weights successfully loaded.") except: pass print( "Model weights not found, initialized model with random weights.") model.to(device) model.eval() with torch.no_grad(): context_idx, context_char_idx, question_idx, question_char_idx = torch.tensor(context_idx, dtype=torch.int64).unsqueeze(0).to(device),\ torch.tensor(context_char_idx, dtype=torch.int64).unsqueeze(0).to(device),\ torch.tensor(question_idx, dtype=torch.int64).unsqueeze(0).to(device),\ torch.tensor(question_char_idx, dtype=torch.int64).unsqueeze(0).to(device) pred1, pred2 = model(context_idx, context_char_idx, question_idx, question_char_idx) starts, ends = discretize(pred1.exp(), pred2.exp(), 15, False) prediction = " ".join(context[starts.item():ends.item() + 1]) return prediction
batch[4][:, 0].long().to(device),\ batch[4][:, 1].long().to(device) optimizer.zero_grad() pred1, pred2 = model(w_context, c_context, w_question, c_question) loss = criterion(pred1, label1) + criterion(pred2, label2) train_losses += loss.item() loss.backward() optimizer.step() writer.add_scalars("train", {"loss": np.round(train_losses / len(train_dataloader), 2), "epoch": epoch + 1}) print("Train loss of the model at epoch {} is: {}".format(epoch + 1, np.round(train_losses / len(train_dataloader), 2))) model.eval() valid_losses = 0 valid_em = 0 valid_f1 = 0 n_samples = 0 with torch.no_grad(): for i, batch in enumerate(valid_dataloader): w_context, c_context, w_question, c_question, labels = batch[0].long().to(device), \ batch[1].long().to(device), \ batch[2].long().to(device), \ batch[3].long().to(device), \ batch[4] first_labels = torch.tensor([[int(a) for a in l.split("|")[0].split(" ")] for l in labels], dtype=torch.int64).to(device) pred1, pred2 = model(w_context, c_context, w_question, c_question)
def main(NMT_config): ### Load RL (global) configurations ### config = parse_args() ### Load trained QA model ### QA_checkpoint = torch.load(config.data_dir + config.QA_best_model) QA_config = QA_checkpoint['config'] QA_mod = BiDAF(QA_config) if QA_config.use_gpu: QA_mod.cuda() QA_mod.load_state_dict(QA_checkpoint['state_dict']) ### Load SQuAD dataset ### data_filter = get_squad_data_filter(QA_config) train_data = read_data(QA_config, 'train', QA_config.load, data_filter=data_filter) dev_data = read_data(QA_config, 'dev', True, data_filter=data_filter) update_config(QA_config, [train_data, dev_data]) print("Total vocabulary for training is %s" % QA_config.word_vocab_size) # from all word2vec_dict = train_data.shared[ 'lower_word2vec'] if QA_config.lower_word else train_data.shared[ 'word2vec'] # from filter-out set word2idx_dict = train_data.shared['word2idx'] # filter-out set idx-vector idx2vec_dict = { word2idx_dict[word]: vec for word, vec in word2vec_dict.items() if word in word2idx_dict } print("{}/{} unique words have corresponding glove vectors.".format( len(idx2vec_dict), len(word2idx_dict))) # <null> and <unk> do not have corresponding vector so random. emb_mat = np.array([ idx2vec_dict[idx] if idx in idx2vec_dict else np.random.multivariate_normal( np.zeros(QA_config.word_emb_size), np.eye(QA_config.word_emb_size)) for idx in range(QA_config.word_vocab_size) ]) config.emb_mat = emb_mat config.new_emb_mat = train_data.shared['new_emb_mat'] num_steps = int( math.ceil(train_data.num_examples / (QA_config.batch_size * QA_config.num_gpus))) * QA_config.num_epochs # offset for question mark NMT_config.max_length = QA_config.ques_size_th - 1 NMT_config.batch_size = QA_config.batch_size ### Construct translator ### translator = make_translator(NMT_config, report_score=True) ### Construct optimizer ### optimizer = optim.SGD(filter(lambda p: p.requires_grad, translator.model.parameters()), lr=config.lr) ### Start RL training ### count = 0 QA_mod.eval() F1_eval = F1Evaluator(QA_config, QA_mod) #eval_model(QA_mod, train_data, dev_data, QA_config, NMT_config, config, translator) for i in range(config.n_episodes): for batches in tqdm(train_data.get_multi_batches( QA_config.batch_size, QA_config.num_gpus, num_steps=num_steps, shuffle=True, cluster=QA_config.cluster), total=num_steps): #for n, p in translator.model.named_parameters(): # print(n) # print(p) #print(p.requires_grad) start = datetime.now() to_input(batches[0][1].data['q'], config.RL_path + config.RL_file) # obtain rewrite and log_prob q, scores, log_prob = translator.translate(NMT_config.src_dir, NMT_config.src, NMT_config.tgt, NMT_config.batch_size, NMT_config.attn_debug) q, cq = ref_query(q) batches[0][1].data['q'] = q batches[0][1].data['cq'] = cq log_prob = torch.stack(log_prob).squeeze(-1) #print(log_prob) translator.model.zero_grad() QA_mod(batches) e = F1_eval.get_evaluation(batches, False, NMT_config, config, translator) reward = Variable(torch.FloatTensor(e.f1s), requires_grad=False) #print(reward) ## Initial loss loss = create_loss(log_prob, reward) loss.backward() optimizer.step()