Exemplo n.º 1
0
def generate(**kwargs):
    opt = Config()
    for k, v in kwargs.items():
        setattr(opt, k, v)

    # 数据预处理
    data = t.load(opt.caption_data_path)
    word2ix, ix2word = data['word2ix'], data['ix2word']

    test_datas = t.load('test_results2.pth')
    imgs = t.load('test_imgs.pth')

    # Caption模型
    model = CaptionModel(opt, None, word2ix, ix2word)
    model = model.load(opt.model_ckpt).eval()
    model.cuda()

    results = []
    for ii, (img_feat, img_id) in tqdm.tqdm(enumerate(zip(test_datas, imgs))):
        sentences = model.generate(img_feat)
        item = {
            'image_id': img_id.replace('.jpg', ''),
            'caption': sentences[0].replace('</EOS>', '')
        }
        results.append(item)
        if ii % 1000 == 0: print sentences[0]
    import json
    with open('submit.json', 'w') as f:
        json.dump(results, f)
Exemplo n.º 2
0
def generate(**kwargs):
    opt = Config()
    for k, v in kwargs.items():
        setattr(opt, k, v)
    device=t.device('cuda') if opt.use_gpu else t.device('cpu')

    # 数据预处理
    data = t.load(opt.caption_data_path, map_location=lambda s, l: s)
    word2ix, ix2word = data['word2ix'], data['ix2word']

    normalize = tv.transforms.Normalize(mean=IMAGENET_MEAN, std=IMAGENET_STD)
    transforms = tv.transforms.Compose([
        tv.transforms.Resize(opt.scale_size),
        tv.transforms.CenterCrop(opt.img_size),
        tv.transforms.ToTensor(),
        normalize
    ])
    img = Image.open(opt.test_img)
    img = transforms(img).unsqueeze(0)

    # 用resnet50来提取图片特征
    resnet50 = tv.models.resnet50(True).eval()
    del resnet50.fc
    resnet50.fc = lambda x: x
    resnet50.to(device)
    img = img.to(device)
    img_feats = resnet50(img).detach()

    # Caption模型
    model = CaptionModel(opt, word2ix, ix2word)
    model = model.load(opt.model_ckpt).eval()
    model.to(device)

    results = model.generate(img_feats.data[0])
    print('\r\n'.join(results))
Exemplo n.º 3
0
def generate(**kwargs):
    opt = Config()
    for k, v in kwargs.items():
        setattr(opt, k, v)
    device = t.device('cuda') if opt.use_gpu else t.device('cpu')

    # 数据预处理
    data = t.load(opt.caption_data_path, map_location=lambda s, l: s)
    word2ix, ix2word = data['word2ix'], data['ix2word']

    normalize = tv.transforms.Normalize(mean=IMAGENET_MEAN, std=IMAGENET_STD)
    transforms = tv.transforms.Compose([
        tv.transforms.Resize(opt.scale_size),
        tv.transforms.CenterCrop(opt.img_size),
        tv.transforms.ToTensor(), normalize
    ])
    img = Image.open(opt.test_img)
    img = transforms(img).unsqueeze(0)

    # 用resnet50来提取图片特征
    resnet50 = tv.models.resnet50(True).eval()
    del resnet50.fc
    resnet50.fc = lambda x: x
    resnet50.to(device)
    img = img.to(device)
    img_feats = resnet50(img).detach()

    # Caption模型
    model = CaptionModel(opt, word2ix, ix2word)
    model = model.load(opt.model_ckpt).eval()
    model.to(device)

    results = model.generate(img_feats.data[0])
    print('\r\n'.join(results))
Exemplo n.º 4
0
def generate(**kwargs):
    opt = Config()
    for k, v in kwargs.items():
        setattr(opt, k, v)

    # 数据预处理
    data = t.load(opt.caption_data_path, map_location=lambda s, l: s)
    word2ix, ix2word = data['word2ix'], data['ix2word']

    IMAGENET_MEAN = [0.485, 0.456, 0.406]
    IMAGENET_STD = [0.229, 0.224, 0.225]
    normalize = tv.transforms.Normalize(mean=IMAGENET_MEAN, std=IMAGENET_STD)
    transforms = tv.transforms.Compose([
        tv.transforms.Resize(opt.scale_size),
        tv.transforms.CenterCrop(opt.img_size),
        tv.transforms.ToTensor(),
        normalize,
    ])

    img = Image.open(opt.test_img)
    img = transforms(img).unsqueeze(0)

    # 用resnet50来提取图片特征
    resnet50 = tv.models.resnet50(True).eval()
    del resnet50.fc
    resnet50.fc = lambda x: x
    if opt.use_gpu:
        resnet50.cuda()
        img = img.cuda()
    with t.no_grad():
        img_feats = resnet50(Variable(img))

    # Caption模型
    model = CaptionModel(opt, word2ix, ix2word)
    model = model.load(opt.model_ckpt).eval()
    if opt.use_gpu:
        model.cuda()

    results = model.generate(img_feats.data[0])
    print('\r\n'.join(results))
Exemplo n.º 5
0
def generate(**kwargs):
    opt = Config()
    for k,v in kwargs.items():
        setattr(opt,k,v)
    
    # 数据预处理
    data = t.load(opt.caption_data_path,map_location=lambda s,l:s)
    word2ix,ix2word = data['word2ix'],data['ix2word']

    IMAGENET_MEAN =  [0.485, 0.456, 0.406]
    IMAGENET_STD =  [0.229, 0.224, 0.225]
    normalize =  tv.transforms.Normalize(mean=IMAGENET_MEAN,std=IMAGENET_STD)
    transforms = tv.transforms.Compose([
                tv.transforms.Scale(opt.scale_size),
                tv.transforms.CenterCrop(opt.img_size),
                tv.transforms.ToTensor(),
                normalize
        ])
    img = Image.open(opt.test_img)
    img = transforms(img).unsqueeze(0)

    # 用resnet50来提取图片特征
    resnet50 = tv.models.resnet50(True).eval()
    del resnet50.fc
    resnet50.fc = lambda x:x
    if opt.use_gpu:
        resnet50.cuda() 
        img = img.cuda()
    img_feats = resnet50(Variable(img,volatile=True))

    # Caption模型
    model = CaptionModel(opt,word2ix,ix2word)
    model = model.load(opt.model_ckpt).eval()
    if opt.use_gpu:
         model.cuda()

    results = model.generate(img_feats.data[0])
    print('\r\n'.join(results))
Exemplo n.º 6
0
def train(**kwargs):
    opt = Config()
    for k, v in kwargs.items():
        setattr(opt, k, v)

    vis = Visualizer(env=opt.env)
    dataloader = get_dataloader(opt)
    _data = dataloader.dataset._data
    word2ix, ix2word = _data['word2ix'], _data['ix2word']

    # cnn = tv.models.resnet50(True)
    model = CaptionModel(opt, None, word2ix, ix2word)
    if opt.model_ckpt:
        model.load(opt.model_ckpt)

    optimizer = model.get_optimizer(opt.lr1)
    criterion = t.nn.CrossEntropyLoss()

    model.cuda()
    criterion.cuda()

    loss_meter = meter.AverageValueMeter()
    perplexity = meter.AverageValueMeter()

    for epoch in range(opt.epoch):

        loss_meter.reset()
        perplexity.reset()
        for ii, (imgs, (captions, lengths),
                 indexes) in tqdm.tqdm(enumerate(dataloader)):
            optimizer.zero_grad()
            input_captions = captions[:-1]
            imgs = imgs.cuda()
            captions = captions.cuda()

            imgs = Variable(imgs)
            captions = Variable(captions)
            input_captions = captions[:-1]
            target_captions = pack_padded_sequence(captions, lengths)[0]

            score, _ = model(imgs, input_captions, lengths)
            loss = criterion(score, target_captions)
            loss.backward()
            # clip_grad_norm(model.rnn.parameters(),opt.grad_clip)
            optimizer.step()
            loss_meter.add(loss.data[0])
            perplexity.add(t.exp(loss.data)[0])

            # 可视化
            if (ii + 1) % opt.plot_every == 0:
                if os.path.exists(opt.debug_file):
                    ipdb.set_trace()

                vis.plot('loss', loss_meter.value()[0])
                vis.plot('perplexity', perplexity.value()[0])

                # 可视化原始图片

                raw_img = _data['train']['ix2id'][indexes[0]]
                img_path = '/data/image/ai_cha/caption/ai_challenger_caption_train_20170902/caption_train_images_20170902/' + raw_img
                raw_img = Image.open(img_path).convert('RGB')
                raw_img = tv.transforms.ToTensor()(raw_img)
                vis.img('raw', raw_img)

                # raw_img = (imgs.data[0]*0.25+0.45).clamp(max=1,min=0)
                # vis.img('raw',raw_img)

                # 可视化人工的描述语句
                raw_caption = captions.data[:, 0]
                raw_caption = ''.join(
                    [_data['ix2word'][ii] for ii in raw_caption])
                vis.text(raw_caption, u'raw_caption')

                # 可视化网络生成的描述语句
                results = model.generate(imgs.data[0])
                vis.text('</br>'.join(results), u'caption')
        if (epoch + 1) % 100 == 0:
            model.save()
Exemplo n.º 7
0
def train(**kwargs):
    opt = Config()
    for k, v in kwargs.items():
        setattr(opt, k, v)
    device=t.device('cuda') if opt.use_gpu else t.device('cpu')

    opt.caption_data_path = 'caption.pth'  # 原始数据
    opt.test_img = ''  # 输入图片
    # opt.model_ckpt='caption_0914_1947' # 预训练的模型

    # 数据
    vis = Visualizer(env=opt.env)
    dataloader = get_dataloader(opt)
    _data = dataloader.dataset._data
    word2ix, ix2word = _data['word2ix'], _data['ix2word']

    # 模型
    model = CaptionModel(opt, word2ix, ix2word)
    if opt.model_ckpt:
        model.load(opt.model_ckpt)
    optimizer = model.get_optimizer(opt.lr)
    criterion = t.nn.CrossEntropyLoss()
   
    model.to(device)

    # 统计
    loss_meter = meter.AverageValueMeter()

    for epoch in range(opt.epoch):
        loss_meter.reset()
        for ii, (imgs, (captions, lengths), indexes) in tqdm.tqdm(enumerate(dataloader)):
            # 训练
            optimizer.zero_grad()
            imgs = imgs.to(device)
            captions = captions.to(device)
            input_captions = captions[:-1]
            target_captions = pack_padded_sequence(captions, lengths)[0]
            score, _ = model(imgs, input_captions, lengths)
            loss = criterion(score, target_captions)
            loss.backward()
            optimizer.step()
            loss_meter.add(loss.item())

            # 可视化
            if (ii + 1) % opt.plot_every == 0:
                if os.path.exists(opt.debug_file):
                    ipdb.set_trace()

                vis.plot('loss', loss_meter.value()[0])

                # 可视化原始图片 + 可视化人工的描述语句
                raw_img = _data['ix2id'][indexes[0]]
                img_path = opt.img_path + raw_img
                raw_img = Image.open(img_path).convert('RGB')
                raw_img = tv.transforms.ToTensor()(raw_img)

                raw_caption = captions.data[:, 0]
                raw_caption = ''.join([_data['ix2word'][ii] for ii in raw_caption])
                vis.text(raw_caption, u'raw_caption')
                vis.img('raw', raw_img, caption=raw_caption)

                # 可视化网络生成的描述语句
                results = model.generate(imgs.data[0])
                vis.text('</br>'.join(results), u'caption')
        model.save()
Exemplo n.º 8
0
def train(**kwargs):
    opt = Config()
    opt.caption_data_path = 'caption.pth'  # 原始数据
    opt.test_img = ''  # 输入图片
    #opt.model_ckpt='caption_0914_1947' # 预训练的模型

    # 数据w
    vis = Visualizer(env=opt.env)
    dataloader = get_dataloader(opt)
    _data = dataloader.dataset._data
    word2ix, ix2word = _data['word2ix'], _data['ix2word']

    # 模型
    model = CaptionModel(opt, word2ix, ix2word)
    if opt.model_ckpt:
        model.load(opt.model_ckpt)
    optimizer = model.get_optimizer(opt.lr)
    criterion = t.nn.CrossEntropyLoss()
    if opt.use_gpu:
        model.cuda()
        criterion.cuda()

    # 统计
    loss_meter = meter.AverageValueMeter()

    for epoch in range(opt.epoch):
        loss_meter.reset()
        for ii, (imgs, (captions, lengths),
                 indexes) in tqdm.tqdm(enumerate(dataloader)):
            # 训练
            optimizer.zero_grad()
            if opt.use_gpu:
                imgs = imgs.cuda()
                captions = captions.cuda()
            imgs = Variable(imgs)
            captions = Variable(captions)
            input_captions = captions[:-1]
            target_captions = pack_padded_sequence(captions, lengths)[0]
            score, _ = model(imgs, input_captions, lengths)
            loss = criterion(score, target_captions)
            loss.backward()
            optimizer.step()
            loss_meter.add(loss.data[0])
            '''
            if (ii+1)%opt.plot_every ==0:
                if os.path.exists(opt.debug_file):
                    ipdb.set_trace()

                vis.plot('loss',loss_meter.value()[0])

                # 可视化原始图片 + 可视化人工的描述语句
                raw_img = _data['ix2id'][indexes[0]]
                img_path=opt.img_path+raw_img
                raw_img = Image.open(img_path).convert('RGB')
                raw_img = tv.transforms.ToTensor()(raw_img)

                raw_caption = captions.data[:,0]
                raw_caption = ''.join([_data['ix2word'][int(ii)] for ii in raw_caption])
                vis.text(raw_caption,u'raw_caption')
                vis.img('raw',raw_img,caption=raw_caption)

                # 可视化网络生成的描述语句
                results = model.generate(imgs.data[0])
                vis.text('</br>'.join(results),u'caption')
                '''
        model.save()
Exemplo n.º 9
0
IMAGENET_STD =  [0.229, 0.224, 0.225]
normalize =  tv.transforms.Normalize(mean=IMAGENET_MEAN,std=IMAGENET_STD)
transforms = tv.transforms.Compose([
            tv.transforms.Scale(opt.scale_size),
            tv.transforms.CenterCrop(opt.img_size),
            tv.transforms.ToTensor(),
            normalize
    ])
img_ = Image.open(opt.test_img)
img = transforms(img_).unsqueeze(0)
img_.resize((int(img_.width*256/img_.height),256))

# 用resnet50来提取图片特征
# 如果本地没有预训练的模型文件,会自动下载
resnet50 = tv.models.resnet50(True).eval()
del resnet50.fc
resnet50.fc = lambda x:x
if opt.use_gpu:
    resnet50.cuda()
    img = img.cuda()
img_feats = resnet50(Variable(img,volatile=True))


# Caption模型
model = CaptionModel(opt,word2ix,ix2word)
model = model.load(opt.model_ckpt).eval()
if opt.use_gpu:
     model.cuda()

results = model.generate(img_feats.data[0])
print('\r\n'.join(results))