Exemplo n.º 1
0
def main(args):
    data_path = os.path.join(args.dataset_path, args.dataset)
    train_data = TSDataset(data_path + '-train.csv',
                           args.windows, args.horizon)
    torch.save(train_data.scaler, 'scaler.pt')
    val_data = TSDataset(data_path + '-val.csv', args.windows,
                         args.horizon, train_data.scaler)
    # test_data = TSDataset(data_path + '-test.csv', args.windows, args.horizon)
    train_loader = DataLoader(train_data, args.batch_size, shuffle=True)
    val_loader = DataLoader(val_data, args.batch_size, shuffle=True)

    
    D = train_data[0][0].shape[-1]

    device = 'cuda' if torch.cuda.is_available() else 'cpu'
    net = DSANet(D, args.windows, args.horizon,
                 args.n_global, args.n_local, args.n_local_filter,
                 args.n_global_head, args.n_global_hidden, args.n_global_stack,
                 args.n_local_head, args.n_local_hidden, args.n_local_stack,
                 args.dropout)
    net = net.to(device)
    loss_fn = torch.nn.MSELoss()
    optimizer = torch.optim.Adam(net.parameters(), lr = args.lr)

    for e in range(1, args.epochs):
        # train one epochs
        train_loss = 0.0
        for index, (X, y) in enumerate(train_loader):
            optimizer.zero_grad()

            yhat = net(X.type(torch.float32).to(device))
            loss = loss_fn(yhat, y.type(torch.float32).to(device))
            train_loss += loss.item()
            loss.backward()
            optimizer.step()
        val_loss = 0.0
        with torch.no_grad():
            for (X, y) in val_loader:
                yhat = net(X.type(torch.float32).to(device))
                loss = loss_fn(yhat, y.type(torch.float32).to(device))
                val_loss += loss.item()
        train_loss /= len(train_loader)
        val_loss /= len(val_loader)
        print('Epoch %d: train loss is %.2f, val loss is %.2f' % (e, train_loss, val_loss))
    
        torch.save(net.state_dict(), 'net-%d-%.2f.pt' % (e, val_loss))
Exemplo n.º 2
0
def main(hparams):
    """
    Main training routine specific for this project
    """
    # ------------------------
    # 1 INIT LIGHTNING MODEL
    # ------------------------
    print('loading model...')
    model = DSANet(hparams)
    print('model built')

    # ------------------------
    # 2 INIT TEST TUBE EXP
    # ------------------------

    # init experiment
    exp = Experiment(
        name='dsanet_exp_{}_window={}_horizon={}'.format(hparams.data_name, hparams.window, hparams.horizon),
        save_dir=hparams.test_tube_save_path,
        autosave=False,
        description='test demo'
    )

    exp.argparse(hparams)
    exp.save()

    # ------------------------
    # 3 DEFINE CALLBACKS
    # ------------------------
    model_save_path = '{}/{}/{}'.format(hparams.model_save_path, exp.name, exp.version)
    early_stop = EarlyStopping(
        monitor='val_loss',
        patience=5,
        verbose=True,
        mode='min'
    )

    # ------------------------
    # 4 INIT TRAINER
    # ------------------------
    trainer = Trainer(
        gpus=[0],
        # auto_scale_batch_size=True,
        max_epochs=10,
        # num_processes=2,
        # num_nodes=2
        
    )

    # ------------------------
    # 5 START TRAINING
    # ------------------------
    trainer.fit(model)

    print('View tensorboard logs by running\ntensorboard --logdir %s' % os.getcwd())
    print('and going to http://localhost:6006 on your browser')
Exemplo n.º 3
0
def main(args):
    data_path = os.path.join(args.dataset_path, args.dataset)
    scaler = torch.load(args.scaler)
    test_data = TSDataset(data_path + '-test.csv', args.windows, args.horizon,
                          scaler)
    test_loader = DataLoader(test_data, args.batch_size)
    D = test_data[0][0].shape[-1]

    device = 'cuda' if torch.cuda.is_available() else 'cpu'
    net = DSANet(D, args.windows, args.horizon, args.n_global, args.n_local,
                 args.n_local_filter, args.n_global_head, args.n_global_hidden,
                 args.n_global_stack, args.n_local_head, args.n_local_hidden,
                 args.n_local_stack, args.dropout)
    loss_fns = []
    for metric in args.metrics:
        if metric == 'RMSE':
            loss_fns.append(RMSE)
        elif metric == 'MSE':
            loss_fns.append(MSE)
        elif metric == 'MAE':
            loss_fns.append(MAPE)
        elif metric == 'RRSE':
            loss_fns.append(RRSE)
        elif metric == 'MAPE':
            loss_fns.append(MAPE)
        else:
            loss_fns.append(lambda yhat, y: np.nan)

    net.load_state_dict(torch.load(args.model))
    net = net.to(device)
    test_losses = [0.0 for i in range(len(loss_fns))]

    with torch.no_grad():
        for (X, y) in test_loader:
            yhat = net(X.type(torch.float32).to(device)).to('cpu').numpy()
            y = y.to('cpu').numpy()
            for i, loss_fn in enumerate(loss_fns):
                loss = loss_fn(yhat, y)
                test_losses[i] += loss
    for metric, loss in zip(args.metrics, test_losses):
        print('%s: %.2f' % (metric, np.mean(loss)))
Exemplo n.º 4
0
def main(hparams):
    """
    Main training routine specific for this project
    """
    # ------------------------
    # 1 INIT LIGHTNING MODEL
    # ------------------------

    print('loading model...')
    model = DSANet(hparams)
    print('model built')

    # ------------------------
    # 2 INIT TEST TUBE EXP
    # ------------------------
    logger = TestTubeLogger("tb_logs_v2", name="my_dsanet_pow")

    # ------------------------
    # 3 DEFINE CALLBACKS
    # ------------------------
    early_stop_callback = EarlyStopping(monitor='val_loss',
                                        patience=25,
                                        verbose=False,
                                        mode='min')

    # ------------------------
    # 4 INIT TRAINER
    # ------------------------
    trainer = pl.Trainer(
        gpus=2,
        distributed_backend='dp',
        logger=logger,
        early_stop_callback=early_stop_callback,
        show_progress_bar=False,
        profiler=True,
    )

    # ------------------------
    # 5 START TRAINING
    # ------------------------
    st_time = datetime.now()
    result = trainer.fit(model)
    print(result)
    eval_time = str(datetime.now() - st_time)
    print(f"Train time: {eval_time}")

    st_time = datetime.now()
    result = trainer.test()
    eval_time = str(datetime.now() - st_time)
    print(f"Test time: {eval_time}")
    print(result)
Exemplo n.º 5
0
    # although we user hyperOptParser, we are using it only as argparse right now
    parent_parser = HyperOptArgumentParser(strategy='grid_search',
                                           add_help=False)

    # gpu args
    parent_parser.add_argument('--test_tube_save_path',
                               type=str,
                               default=test_tube_dir,
                               help='where to save logs')
    parent_parser.add_argument('--model_save_path',
                               type=str,
                               default=checkpoint_dir,
                               help='where to save model')

    # allow model to overwrite or extend args
    parser = DSANet.add_model_specific_args(parent_parser, root_dir)
    hyperparams = parser.parse_args()
    print(hyperparams)

    # ---------------------
    # RUN TRAINING
    # ---------------------
    # run on HPC cluster
    print(f'RUNNING ON CPU')
    # * change the following code to comments for grid search
    main(hyperparams)

    # * recover the following code for grid search
    # hyperparams.optimize_parallel_cpu(
    #     main,
    #     nb_trials=24,    # this number needs to be adjusted according to the actual situation
def optimize(optimizer_params):
    """
    Main training routine specific for this project
    """
    global out_file, ITERATION
    ITERATION += 1
    # dirs
    root_dir = os.path.dirname(os.path.realpath(__file__))
    demo_log_dir = os.path.join(root_dir, 'dsanet_logs')
    checkpoint_dir = os.path.join(demo_log_dir, 'model_weights')
    test_tube_dir = os.path.join(demo_log_dir, 'test_tube_data')

    # although we user hyperOptParser, we are using it only as argparse right now
    parent_parser = ArgumentParser( add_help=False)

    # gpu args
    parent_parser.add_argument('--test_tube_save_path', type=str, default=test_tube_dir, help='where to save logs')
    parent_parser.add_argument('--model_save_path', type=str, default=checkpoint_dir, help='where to save model')

    # allow model to overwrite or extend args
    parser = DSANet.add_model_specific_args(parent_parser, root_dir)
    hyperparams = parser.parse_args()
    setattr(hyperparams, 'batch_size', int(optimizer_params['batch_size']))
    setattr(hyperparams, 'drop_prob', optimizer_params['dropout'])
    setattr(hyperparams, 'learning_rate', optimizer_params['learning_rate'])
    setattr(hyperparams, 'd_model', int(optimizer_params['units']))
    setattr(hyperparams, 'local', int(optimizer_params['local']))
    setattr(hyperparams, 'n_kernels', int(optimizer_params['n_kernels']))
    setattr(hyperparams, 'window', int(optimizer_params['window']))
    hparams = hyperparams
    print(f"TESTING hparams: mv:{hparams.n_multiv}, bs:{hparams.batch_size}, drop:{hparams.drop_prob}, lr:{hparams.learning_rate}, d_model:{hparams.d_model}, local:{hparams.local}, n_kernels:{hparams.n_kernels}, window:{hparams.window}")
    
    # ------------------------
    # 1 INIT LIGHTNING MODEL
    # ------------------------

    print('loading model...')
    model = DSANet(hparams)
    print('model built')

    # ------------------------
    # 2 INIT TEST TUBE EXP
    # ------------------------

    logger = TestTubeLogger("tb_logs", name="my_dsanet_power_v2")

    # ------------------------
    # 3 DEFINE CALLBACKS
    # ------------------------

    early_stop_callback = EarlyStopping(
        monitor='val_loss',
        patience=25,
        verbose=False,
        mode='min'
    )

    # ------------------------
    # 4 INIT TRAINER
    # ------------------------

    trainer = pl.Trainer(
        gpus=4,
        distributed_backend='dp',
        logger=logger,
        early_stop_callback=early_stop_callback,
        show_progress_bar=False,
        log_save_interval=10,
    )

    # ------------------------
    # 5 START TRAINING
    # ------------------------
    st_time = datetime.now()
    result = trainer.fit(model)
    print(result)
    eval_time = str(datetime.now() - st_time)
    print(eval_time)
    print(f"Iteration {ITERATION}: Getting results...")
    csv_load_path = os.path.join(root_dir, logger.experiment.save_dir)
    csv_load_path = '{}/{}/{}{}'.format(csv_load_path, logger.experiment.name, 'version_', logger.experiment.version)
    df = pd.read_csv('{}/{}'.format(csv_load_path, 'metrics.csv'))  # change to experiment save dir
    min_idx = df['val_nd'].idxmin()

    of_connection = open(out_file, 'a')
    writer = csv.writer(of_connection)
    writer.writerow([optimizer_params, hparams, df['val_loss'].iloc[min_idx], df['val_loss'].iloc[min_idx],
                     df['val_nd'].iloc[min_idx], df['NRMSE'].iloc[min_idx], df['val_rho10'].iloc[min_idx],
                     df['val_rho50'].iloc[min_idx], df['val_rho90'].iloc[min_idx], eval_time, STATUS_OK])
    of_connection.close()
    #torch.cuda.empty_cache()
    return {'loss': df['val_nd'].iloc[min_idx],
            'ND': df['val_nd'].iloc[min_idx],
            'NRMSE': df['NRMSE'].iloc[min_idx],
            'val_loss': df['val_loss'].iloc[min_idx],
            'params': optimizer_params,
            'rho_metric': {'rho10': df['val_rho10'].iloc[min_idx], 'rho50': df['val_rho50'].iloc[min_idx],
                           'rho90': df['val_rho90'].iloc[min_idx]},
            'iteration': ITERATION,
            'eval_time': eval_time,
            'status': STATUS_OK}
Exemplo n.º 7
0
import csv
import pytorch_lightning as pl
import torch
from model import DSANet
from datetime import datetime

out_file = '/scratch/project_2002244/DSANet/save/test_runs_electricity_final_v2.csv'
ckpt_load_path = '/scratch/project_2002244/DSANet/tb_logs_v2'
path_list = [
    os.path.join(dirpath, filename)
    for dirpath, _, filenames in os.walk(ckpt_load_path)
    for filename in filenames if filename.endswith('.ckpt')
]

for filename in path_list:
    model = DSANet.load_from_checkpoint(filename)
    trainer = pl.Trainer(resume_from_checkpoint=filename)

    if model.hparams.n_multiv == 321 or model.hparams.n_multiv == 327:
        print('we have electricity data')
    else:
        continue

    if hasattr(model.hparams, 'mcdropout'):
        print("we have mcdropout")
    else:
        print("we set mcdropout to False")
        setattr(model.hparams, 'mcdropout', 'False')

    if hasattr(model.hparams, 'powerset'):
        print("we have powerset")
def main(hparams):
    """
    Main training routine specific for this project
    """
    # ------------------------
    # 1 INIT LIGHTNING MODEL
    # ------------------------
    print('loading model...')
    model = DSANet(hparams)
    print('model built')

    # ------------------------
    # 2 INIT TEST TUBE EXP
    # ------------------------

    # init experiment
    exp = Experiment(name='dsanet_exp_{}_window={}_horizon={}'.format(
        hparams.data_name, hparams.window, hparams.horizon),
                     save_dir=hparams.test_tube_save_path,
                     autosave=False,
                     description='test demo')

    exp.argparse(hparams)
    exp.save()

    # ------------------------
    # 3 DEFINE CALLBACKS
    # ------------------------
    model_save_path = '{}/{}/{}'.format(hparams.model_save_path, exp.name,
                                        exp.version)

    checkpoint_callback = ModelCheckpoint(filepath=model_save_path,
                                          save_best_only=True,
                                          verbose=True,
                                          monitor='val_loss',
                                          mode='auto')

    early_stop = EarlyStopping(monitor='val_loss',
                               patience=25,
                               verbose=True,
                               mode='min')

    # ------------------------
    # 4 INIT TRAINER
    # ------------------------
    trainer = Trainer(
        gpus="0",
        distributed_backend='dp',
        experiment=exp,
        early_stop_callback=early_stop,
        checkpoint_callback=checkpoint_callback,
    )

    # ------------------------
    # 5 START TRAINING
    # ------------------------
    if hparams.test_only:
        model_load_path = '{}/{}'.format(hparams.model_save_path, exp.name)
        # metrics_load_path = '{}/{}'.format(hparams.test_tube_save_path, exp.name)

        path_list = [
            os.path.join(dirpath, filename)
            for dirpath, _, filenames in os.walk(model_load_path)
            for filename in filenames if filename.endswith('.ckpt')
        ]
        # for dirpath, dirnames, filenames in os.walk(model_load_path):
        #    if filename in [f for f in filenames if f.endswith(".ckpt")]:
        for filename in path_list:
            print(filename)
            data = filename.split("/")
            version_number = data[len(data) - 2]
            metrics_load_path = '{}/{}'.format(hparams.test_tube_save_path,
                                               exp.name)
            metrics_load_path = '{}/{}{}/{}'.format(metrics_load_path,
                                                    'version_', version_number,
                                                    'meta_tags.csv')
            print(metrics_load_path)
            hparams.metrics_load_path = metrics_load_path
            model = DSANet(hparams)
            model = DSANet.load_from_metrics(weights_path=filename,
                                             tags_csv=metrics_load_path,
                                             on_gpu=True)
            # model = LightningModule.load_from_checkpoint(filename)
            # test (pass in the model)
            hparams.metrics_load_path = metrics_load_path
            result = trainer.test(model)
            print(result)
    else:
        result = trainer.fit(model)

        print('View tensorboard logs by running\ntensorboard --logdir %s' %
              os.getcwd())
        print('and going to http://localhost:6006 on your browser')
Exemplo n.º 9
0
def optimize(optimizer_params):
    """
    Main training routine specific for this project
    """
    global val_results, test_results
    global val_out_file, test_out_file, ITERATION, epochs
    ITERATION += 1
    root_dir = os.path.dirname(os.path.realpath(__file__))
    # although we user hyperOptParser, we are using it only as argparse right now
    parent_parser = ArgumentParser(add_help=False)

    # allow model to overwrite or extend args
    parser = DSANet.add_model_specific_args(parent_parser, root_dir)
    hyperparams = parser.parse_args()
    dataset = DataUtil(hyperparams, 2)
    if hasattr(dataset, 'scale'):
        #print('we have scale')
        setattr(hyperparams, 'scale', dataset.scale)
        #print(dataset.scale)
    if hasattr(dataset, 'scaler'):
        #print('we have scaler')
        setattr(hyperparams, 'scaler', dataset.scaler)
        #rint(dataset.scaler)

    setattr(hyperparams, 'n_multiv', dataset.m)
    setattr(hyperparams, 'batch_size', int(optimizer_params['batch_size']))
    setattr(hyperparams, 'drop_prob', optimizer_params['dropout'])
    setattr(hyperparams, 'learning_rate', optimizer_params['learning_rate'])
    setattr(hyperparams, 'd_model', int(optimizer_params['units']))
    setattr(hyperparams, 'local', int(optimizer_params['local']))
    setattr(hyperparams, 'n_kernels', int(optimizer_params['n_kernels']))
    setattr(hyperparams, 'window', int(optimizer_params['window']))
    hparams = hyperparams
    print(
        f"\n#######\nTESTING hparams: mv:{hparams.n_multiv}, bs:{hparams.batch_size}, drop:{hparams.drop_prob}, lr:{hparams.learning_rate}, d_model:{hparams.d_model}, local:{hparams.local}, n_kernels:{hparams.n_kernels}, window:{hparams.window}\n#######"
    )

    # ------------------------
    # 1 INIT LIGHTNING MODEL
    # ------------------------
    print('loading model...')
    model = DSANet(hparams)
    print('model built')
    # ------------------------
    # 2 INIT TEST TUBE EXP
    # ------------------------
    filename = '{}{}{}{}{}{}'.format('my_dsanet_', hparams.data_name, '_',
                                     hparams.powerset, '_',
                                     str(hparams.calendar))
    logger = TestTubeLogger("tb_logs_v2", filename)
    # ------------------------
    # 3 DEFINE CALLBACKS
    # ------------------------
    early_stop_callback = EarlyStopping(monitor='val_loss',
                                        patience=5,
                                        verbose=False,
                                        mode='min')
    # ------------------------
    # 4 INIT TRAINER
    # ------------------------
    trainer = pl.Trainer(gpus=4,
                         distributed_backend='dp',
                         logger=logger,
                         early_stop_callback=early_stop_callback,
                         show_progress_bar=False,
                         profiler=True,
                         fast_dev_run=False,
                         max_epochs=100)
    # ------------------------
    # 5 START TRAINING
    # ------------------------
    st_time = datetime.now()
    result = trainer.fit(model)
    eval_result = model.val_results
    df1 = pd.DataFrame(eval_result, [ITERATION])
    print(result)
    eval_time = str(datetime.now() - st_time)
    print(f"Train time: {eval_time}, Results: {eval_result}")

    st_time = datetime.now()
    model.hparams.mcdropout = 'True'
    trainer.test(model)
    eval_time = str(datetime.now() - st_time)
    test_result = model.test_results
    df2 = pd.DataFrame(test_result, [ITERATION])
    print(f"Test time: {eval_time}, Results: {test_result}")
    df1 = pd.concat([df1, pd.DataFrame(vars(hparams), [ITERATION])],
                    axis=1,
                    sort=False)
    df2 = pd.concat([df2, pd.DataFrame(vars(hparams), [ITERATION])],
                    axis=1,
                    sort=False)

    val_results = pd.concat([val_results, df1], axis=0, sort=False)
    test_results = pd.concat([test_results, df2], axis=0, sort=False)
    return eval_result['val_nd_all']
Exemplo n.º 10
0
def main(hparams):
    """
    Main training routine specific for this project
    """
    global val_results, test_results
    # ------------------------
    # 1 INIT LIGHTNING MODEL
    # ------------------------
    print('loading model...')
    model = DSANet(hparams)
    print('model built')
    print(
        f"\n#######\nTESTING hparams: mv:{hparams.n_multiv}, bs:{hparams.batch_size}, drop:{hparams.drop_prob}, lr:{hparams.learning_rate}, d_model:{hparams.d_model}, local:{hparams.local}, n_kernels:{hparams.n_kernels}, window:{hparams.window}\n#######"
    )

    # ------------------------
    # 2 INIT TEST TUBE EXP
    # ------------------------
    filename = '{}{}{}{}{}{}'.format('my_dsanet_', hparams.data_name, '_',
                                     hparams.powerset, '_',
                                     str(hparams.calendar))
    logger = TestTubeLogger("tb_logs_v2", filename)
    # ------------------------
    # 3 DEFINE CALLBACKS
    # ------------------------
    early_stop_callback = EarlyStopping(monitor='val_loss',
                                        patience=35,
                                        verbose=False,
                                        mode='min')
    # ------------------------
    # 4 INIT TRAINER
    # ------------------------
    trainer = pl.Trainer(gpus=2,
                         distributed_backend='dp',
                         logger=logger,
                         early_stop_callback=early_stop_callback,
                         show_progress_bar=False,
                         profiler=True,
                         fast_dev_run=False)
    # ------------------------
    # 5 START TRAINING
    # ------------------------
    if not hparams.test_only:
        st_time = datetime.now()
        result = trainer.fit(model)
        eval_result = model.val_results
        df1 = pd.DataFrame(eval_result, [0])
        #print(result)
        eval_time = str(datetime.now() - st_time)
        print(f"Train time: {eval_time}, Results: {eval_result}")

        st_time = datetime.now()
        model.hparams.mcdropout = 'True'
        trainer.test(model)
        eval_time = str(datetime.now() - st_time)
        test_result = model.test_results
        df2 = pd.DataFrame(test_result, [0])
        print(f"Test time: {eval_time}, Results: {test_result}")

        df1 = pd.concat([df1, pd.DataFrame(vars(hparams), [0])],
                        axis=1,
                        sort=False)
        df2 = pd.concat([df2, pd.DataFrame(vars(hparams), [0])],
                        axis=1,
                        sort=False)
        val_results = pd.concat([val_results, df1], axis=0, sort=False)
        test_results = pd.concat([test_results, df2], axis=0, sort=False)
        val_filename = '{}{}{}{}{}{}'.format(filename, '_',
                                             str(hparams.window), '_',
                                             str(hparams.horizon), '_val.csv')
        test_filename = '{}{}{}{}{}{}'.format(filename, '_',
                                              str(hparams.window), '_',
                                              str(hparams.horizon),
                                              '_test.csv')
        val_results.to_csv(val_filename, mode='a')
        test_results.to_csv(test_filename, mode='a')
    else:
        st_time = datetime.now()
        model.hparams.mcdropout = 'True'
        trainer.test(model)
        eval_time = str(datetime.now() - st_time)
        test_result = model.test_results
        df2 = pd.DataFrame(test_result, [0])
        print(f"Test time: {eval_time}, Results: {test_result}")
        df2 = pd.concat([df2, pd.DataFrame(vars(hparams), [0])],
                        axis=1,
                        sort=False)
        test_results = pd.concat([test_results, df2], axis=0, sort=False)
        test_filename = '{}{}{}{}{}{}'.format(filename, '_',
                                              str(hparams.window), '_',
                                              str(hparams.horizon),
                                              '_test.csv')
        test_results.to_csv(test_filename, mode='a')
def optimize(optimizer_params):
    """
    Main training routine specific for this project
    """
    logging.basicConfig(level=logging.INFO)
    # dirs
    root_dir = os.path.dirname(os.path.realpath(__file__))
    demo_log_dir = os.path.join(root_dir, 'dsanet_logs')
    checkpoint_dir = os.path.join(demo_log_dir, 'model_weights')
    test_tube_dir = os.path.join(demo_log_dir, 'test_tube_data')

    # although we user hyperOptParser, we are using it only as argparse right now
    parent_parser = HyperOptArgumentParser(strategy='grid_search',
                                           add_help=False)

    # gpu args
    parent_parser.add_argument('--test_tube_save_path',
                               type=str,
                               default=test_tube_dir,
                               help='where to save logs')
    parent_parser.add_argument('--model_save_path',
                               type=str,
                               default=checkpoint_dir,
                               help='where to save model')

    # allow model to overwrite or extend args
    parser = DSANet.add_model_specific_args(parent_parser, root_dir)
    hyperparams = parser.parse_args()
    print(hyperparams)
    setattr(hyperparams, 'batch_size', int(optimizer_params['batch_size']))
    setattr(hyperparams, 'drop_prob', optimizer_params['dropout'])
    setattr(hyperparams, 'learning_rate', optimizer_params['learning_rate'])
    setattr(hyperparams, 'd_model', int(optimizer_params['units']))
    # hyperparams['batch_size'] = optimizer_params['batch_size']
    # hyperparams['drop_prob'] = optimizer_params['dropout']
    # hyperparams['learning_rate'] = optimizer_params['learning_rate']
    # hyperparams['d_model'] = optimizer_params['units']
    print(hyperparams)
    hparams = hyperparams
    # ------------------------
    # 1 INIT LIGHTNING MODEL
    # ------------------------

    print('loading model...')
    model = DSANet(hparams)
    print('model built')

    # ------------------------
    # 2 INIT TEST TUBE EXP
    # ------------------------

    # init experiment
    exp = Experiment(name='dsanet_exp_{}_window={}_horizon={}'.format(
        hparams.data_name, hparams.window, hparams.horizon),
                     save_dir=hparams.test_tube_save_path,
                     autosave=False,
                     description='test demo')

    exp.argparse(hparams)
    exp.save()

    # ------------------------
    # 3 DEFINE CALLBACKS
    # ------------------------
    model_save_path = '{}/{}/{}'.format(hparams.model_save_path, exp.name,
                                        exp.version)

    checkpoint_callback = ModelCheckpoint(filepath=model_save_path,
                                          save_best_only=True,
                                          verbose=True,
                                          monitor='val_loss',
                                          mode='auto')

    early_stop = EarlyStopping(monitor='val_loss',
                               patience=25,
                               verbose=True,
                               mode='min')

    # ------------------------
    # 4 INIT TRAINER
    # ------------------------
    trainer = Trainer(
        gpus="0,1",
        distributed_backend='ddp',
        experiment=exp,
        early_stop_callback=early_stop,
        checkpoint_callback=checkpoint_callback,
    )

    # ------------------------
    # 5 START TRAINING
    # ------------------------
    st_time = datetime.now()
    trainer.fit(model)
    eval_time = str(datetime.now() - st_time)
    print("Iteration %d: Getting results ... " % ITERATION)
    csv_load_path = '{}/{}/{}{}'.format(hparams.test_tube_save_path, exp.name,
                                        'version_', exp.version)
    df = pd.read_csv('{}/{}'.format(
        csv_load_path, 'metrics.csv'))  # change to experiment save dir
    min_idx = df['val_nd'].idxmin()

    of_connection = open(out_file, 'a')
    writer = csv.writer(of_connection)
    writer.writerow([
        optimizer_params, hparams, df['tng_loss'].iloc[min_idx],
        df['val_loss'].iloc[min_idx], df['val_nd'].iloc[min_idx],
        df['NRMSE'].iloc[min_idx], df['val_rho10'].iloc[min_idx],
        df['val_rho50'].iloc[min_idx], df['val_rho90'].iloc[min_idx],
        eval_time, STATUS_OK
    ])
    of_connection.close()

    return {
        'loss': df['val_nd'].iloc[min_idx],
        'ND': df['val_nd'].iloc[min_idx],
        'NRMSE': df['NRMSE'].iloc[min_idx],
        'val_loss': df['val_loss'].iloc[min_idx],
        'params': optimizer_params,
        'rho_metric': {
            'rho10': df['val_rho10'].iloc[min_idx],
            'rho50': df['val_rho50'].iloc[min_idx],
            'rho90': df['val_rho90'].iloc[min_idx]
        },
        'iteration': ITERATION,
        'eval_time': eval_time,
        'status': STATUS_OK
    }