Exemplo n.º 1
0
def main_fixed_mask(args):

    device = torch.device("cuda:" + str(args.device))
    dataset = PygNodePropPredDataset(name=args.dataset)
    data = dataset[0]
    split_idx = dataset.get_idx_split()
    evaluator = Evaluator(args.dataset)

    x = data.x.to(device)
    y_true = data.y.to(device)
    train_idx = split_idx['train'].to(device)

    edge_index = data.edge_index.to(device)
    edge_index = to_undirected(edge_index, data.num_nodes)

    if args.self_loop:
        edge_index = add_self_loops(edge_index, num_nodes=data.num_nodes)[0]

    args.in_channels = data.x.size(-1)
    args.num_tasks = dataset.num_classes

    model = DeeperGCN(args).to(device)
    pruning.add_mask(model, args.num_layers)
    
    for name, param in model.named_parameters():
        if 'mask' in name:
            param.requires_grad = False

    optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)
    results = {'highest_valid': 0, 'final_train': 0, 'final_test': 0, 'highest_train': 0, 'epoch': 0}
    
    start_epoch = 1
    for epoch in range(start_epoch, args.epochs + 1):
    
        epoch_loss = train_fixed(model, x, edge_index, y_true, train_idx, optimizer, args)
        result = test(model, x, edge_index, y_true, split_idx, evaluator)
        train_accuracy, valid_accuracy, test_accuracy = result

        if valid_accuracy > results['highest_valid']:
            results['highest_valid'] = valid_accuracy
            results['final_train'] = train_accuracy
            results['final_test'] = test_accuracy
            results['epoch'] = epoch

        print(time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) + ' | ' +
              'Baseline (FIX Mask) Epoch:[{}/{}]\t LOSS:[{:.4f}] Train :[{:.2f}] Valid:[{:.2f}] Test:[{:.2f}] | Update Test:[{:.2f}] at epoch:[{}]'
              .format(epoch, args.epochs, epoch_loss, train_accuracy * 100,
                                                               valid_accuracy * 100,
                                                               test_accuracy * 100, 
                                                               results['final_test'] * 100,
                                                               results['epoch']))
    print("=" * 120)
    print("syd final: Baseline, Train:[{:.2f}]  Best Val:[{:.2f}] at epoch:[{}] | Final Test Acc:[{:.2f}]"
        .format(            results['final_train'] * 100,
                            results['highest_valid'] * 100,
                            results['epoch'],
                            results['final_test'] * 100))
    print("=" * 120)
Exemplo n.º 2
0
def main_fixed_mask(args, imp_num, resume_train_ckpt=None):

    device = torch.device("cuda:" + str(args.device))
    dataset = PygLinkPropPredDataset(name=args.dataset)
    data = dataset[0]
    # Data(edge_index=[2, 2358104], edge_weight=[2358104, 1], edge_year=[2358104, 1], x=[235868, 128])
    split_edge = dataset.get_edge_split()
    evaluator = Evaluator(args.dataset)

    x = data.x.to(device)

    edge_index = data.edge_index.to(device)

    args.in_channels = data.x.size(-1)
    args.num_tasks = 1

    model = DeeperGCN(args).to(device)
    pruning.add_mask(model, args)
    predictor = LinkPredictor(args).to(device)
    
    rewind_weight_mask, adj_spar, wei_spar = pruning.resume_change(resume_train_ckpt, model, args)
    model.load_state_dict(rewind_weight_mask)
    predictor.load_state_dict(resume_train_ckpt['predictor_state_dict'])

    # model.load_state_dict(rewind_weight_mask)
    # predictor.load_state_dict(rewind_predict_weight)
    adj_spar, wei_spar = pruning.print_sparsity(model, args)

    for name, param in model.named_parameters():
        if 'mask' in name:
            param.requires_grad = False

    optimizer = torch.optim.Adam(list(model.parameters()) + list(predictor.parameters()), lr=args.lr)
    #results = {}
    results = {'epoch': 0 }
    keys = ['highest_valid', 'final_train', 'final_test', 'highest_train']
    hits = ['Hits@10', 'Hits@50', 'Hits@100']
    
    for key in keys:
        results[key] = {k: 0 for k in hits}
    results['adj_spar'] = adj_spar
    results['wei_spar'] = wei_spar
    
    start_epoch = 1
    
    for epoch in range(start_epoch, args.fix_epochs + 1):

        t0 = time.time()
        epoch_loss = train.train_fixed(model, predictor, x, edge_index, split_edge, optimizer, args.batch_size, args)
        result = train.test(model, predictor, x, edge_index, split_edge, evaluator, args.batch_size, args)
        # return a tuple
        k = 'Hits@50'
        train_result, valid_result, test_result = result[k]

        if train_result > results['highest_train'][k]:
            results['highest_train'][k] = train_result

        if valid_result > results['highest_valid'][k]:
            results['highest_valid'][k] = valid_result
            results['final_train'][k] = train_result
            results['final_test'][k] = test_result
            results['epoch'] = epoch
            pruning.save_all(model, predictor, 
                                    rewind_weight_mask, 
                                    optimizer, 
                                    imp_num, 
                                    epoch, 
                                    args.model_save_path, 
                                    'IMP{}_fixed_ckpt'.format(imp_num))

        epoch_time = (time.time() - t0) / 60
        print(time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) + ' | ' +
              'IMP:[{}] (FIX Mask) Epoch:[{}/{}] LOSS:[{:.4f}] Train :[{:.2f}] Valid:[{:.2f}] Test:[{:.2f}] | Update Test:[{:.2f}] at epoch:[{}] Time:[{:.2f}min]'
              .format(imp_num, epoch, args.fix_epochs, epoch_loss, train_result * 100,
                                                               valid_result * 100,
                                                               test_result * 100, 
                                                               results['final_test'][k] * 100,
                                                               results['epoch'],
                                                               epoch_time))
    print("=" * 120)
    print("syd final: IMP:[{}], Train:[{:.2f}]  Best Val:[{:.2f}] at epoch:[{}] | Final Test Acc:[{:.2f}] Adj:[{:.2f}%] Wei:[{:.2f}%]"
        .format(imp_num,    results['final_train'][k] * 100,
                            results['highest_valid'][k] * 100,
                            results['epoch'],
                            results['final_test'][k] * 100,
                            results['adj_spar'],
                            results['wei_spar']))
    print("=" * 120)
Exemplo n.º 3
0
def main_fixed_mask(args, imp_num, final_state_dict=None, resume_train_ckpt=None):

    device = torch.device("cuda:" + str(args.device))
    dataset = OGBNDataset(dataset_name=args.dataset)
    nf_path = dataset.extract_node_features(args.aggr)

    args.num_tasks = dataset.num_tasks
    args.nf_path = nf_path

    evaluator = Evaluator(args.dataset)
    criterion = torch.nn.BCEWithLogitsLoss()

    valid_data_list = []
    for i in range(args.num_evals):

        parts = dataset.random_partition_graph(dataset.total_no_of_nodes, cluster_number=args.valid_cluster_number)
        valid_data = dataset.generate_sub_graphs(parts, cluster_number=args.valid_cluster_number)
        valid_data_list.append(valid_data)

    print("-" * 120)
    model = DeeperGCN(args).to(device)
    pruning.add_mask(model)

    if final_state_dict is not None:
        
        pruning.retrain_operation(dataset, model, final_state_dict)
        adj_spar, wei_spar = pruning.print_sparsity(dataset, model)

    for name, param in model.named_parameters():
        if 'mask' in name:
            param.requires_grad = False

    optimizer = optim.Adam(model.parameters(), lr=args.lr)
    results = {'highest_valid': 0, 'final_train': 0, 'final_test': 0, 'highest_train': 0, 'epoch':0}
    results['adj_spar'] = adj_spar
    results['wei_spar'] = wei_spar
    
    start_epoch = 1
    if resume_train_ckpt:
        dataset.adj = resume_train_ckpt['adj']
        start_epoch = resume_train_ckpt['epoch']
        rewind_weight_mask = resume_train_ckpt['rewind_weight_mask']
        ori_model_dict = model.state_dict()
        over_lap = {k : v for k, v in resume_train_ckpt['model_state_dict'].items() if k in ori_model_dict.keys()}
        ori_model_dict.update(over_lap)
        model.load_state_dict(ori_model_dict)
        print("Resume at IMP:[{}] epoch:[{}] len:[{}/{}]!".format(imp_num, resume_train_ckpt['epoch'], len(over_lap.keys()), len(ori_model_dict.keys())))
        optimizer.load_state_dict(resume_train_ckpt['optimizer_state_dict'])
        adj_spar, wei_spar = pruning.print_sparsity(dataset, model)
    
    for epoch in range(start_epoch, args.epochs + 1):
        # do random partition every epoch
        t0 = time.time()
        train_parts = dataset.random_partition_graph(dataset.total_no_of_nodes, cluster_number=args.cluster_number)
        data = dataset.generate_sub_graphs(train_parts, cluster_number=args.cluster_number, ifmask=True)
        epoch_loss = train.train_fixed(data, dataset, model, optimizer, criterion, device, args)
        result = train.multi_evaluate(valid_data_list, dataset, model, evaluator, device)

        train_result = result['train']['rocauc']
        valid_result = result['valid']['rocauc']
        test_result = result['test']['rocauc']

        if valid_result > results['highest_valid']:
            results['highest_valid'] = valid_result
            results['final_train'] = train_result
            results['final_test'] = test_result
            results['epoch'] = epoch
            final_state_dict = pruning.save_all(dataset, 
                                                model, 
                                                None, 
                                                optimizer, 
                                                imp_num, 
                                                epoch, 
                                                args.model_save_path, 
                                                'IMP{}_fixed_ckpt'.format(imp_num))
        epoch_time = (time.time() - t0) / 60
        print(time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) + ' | ' +
              'IMP:[{}] (FIX Mask) Epoch[{}/{}] LOSS[{:.4f}] Train[{:.2f}] Valid[{:.2f}] Test[{:.2f}] | Update Test[{:.2f}] at epoch[{}] | Adj[{:.2f}%] Wei[{:.2f}%] Time[{:.2f}min]'
              .format(imp_num, epoch, args.epochs, epoch_loss, train_result * 100,
                                                               valid_result * 100,
                                                               test_result * 100,
                                                               results['final_test'] * 100,
                                                               results['epoch'],
                                                               results['adj_spar'] * 100,
                                                               results['wei_spar'] * 100,
                                                               epoch_time))
    print("=" * 120)
    print("INFO final: IMP:[{}], Train:[{:.2f}]  Best Val:[{:.2f}] at epoch:[{}] | Final Test Acc:[{:.2f}] | Adj:[{:.2f}%] Wei:[{:.2f}%]"
        .format(imp_num,    results['final_train'] * 100,
                            results['highest_valid'] * 100,
                            results['epoch'],
                            results['final_test'] * 100,
                            results['adj_spar'] * 100,
                            results['wei_spar'] * 100))
    print("=" * 120)
Exemplo n.º 4
0
def main_fixed_mask(args,
                    imp_num,
                    adj_percent,
                    wei_percent,
                    resume_train_ckpt=None):

    device = torch.device("cuda:" + str(args.device))
    dataset = PygNodePropPredDataset(name=args.dataset)
    data = dataset[0]
    split_idx = dataset.get_idx_split()
    evaluator = Evaluator(args.dataset)

    x = data.x.to(device)
    y_true = data.y.to(device)
    train_idx = split_idx['train'].to(device)

    edge_index = data.edge_index.to(device)
    edge_index = to_undirected(edge_index, data.num_nodes)

    if args.self_loop:
        edge_index = add_self_loops(edge_index, num_nodes=data.num_nodes)[0]

    args.in_channels = data.x.size(-1)
    args.num_tasks = dataset.num_classes

    model = DeeperGCN(args).to(device)
    pruning.add_mask(model, args.num_layers)
    pruning.random_pruning(model, args, adj_percent, wei_percent)
    adj_spar, wei_spar = pruning.print_sparsity(model, args)

    for name, param in model.named_parameters():
        if 'mask' in name:
            param.requires_grad = False

    optimizer = torch.optim.Adam(model.parameters(), lr=args.lr)
    results = {
        'highest_valid': 0,
        'final_train': 0,
        'final_test': 0,
        'highest_train': 0,
        'epoch': 0
    }
    results['adj_spar'] = adj_spar
    results['wei_spar'] = wei_spar

    start_epoch = 1
    if resume_train_ckpt:

        start_epoch = resume_train_ckpt['epoch']
        ori_model_dict = model.state_dict()
        over_lap = {
            k: v
            for k, v in resume_train_ckpt['model_state_dict'].items()
            if k in ori_model_dict.keys()
        }
        ori_model_dict.update(over_lap)
        model.load_state_dict(ori_model_dict)
        print("(RP FIXED MASK) Resume at epoch:[{}] len:[{}/{}]!".format(
            resume_train_ckpt['epoch'], len(over_lap.keys()),
            len(ori_model_dict.keys())))
        optimizer.load_state_dict(resume_train_ckpt['optimizer_state_dict'])
        adj_spar, wei_spar = pruning.print_sparsity(model, args)

    for epoch in range(start_epoch, args.epochs + 1):

        epoch_loss = train_fixed(model, x, edge_index, y_true, train_idx,
                                 optimizer, args)
        result = test(model, x, edge_index, y_true, split_idx, evaluator)
        train_accuracy, valid_accuracy, test_accuracy = result

        if valid_accuracy > results['highest_valid']:
            results['highest_valid'] = valid_accuracy
            results['final_train'] = train_accuracy
            results['final_test'] = test_accuracy
            results['epoch'] = epoch
            pruning.save_all(model, None, optimizer, imp_num, epoch,
                             args.model_save_path,
                             'RP{}_fixed_ckpt'.format(imp_num))

        print(
            time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) + ' | ' +
            'RP:[{}] (FIX Mask) Epoch:[{}/{}]\t LOSS:[{:.4f}] Train :[{:.2f}] Valid:[{:.2f}] Test:[{:.2f}] | Update Test:[{:.2f}] at epoch:[{}]'
            .format(imp_num, epoch, args.epochs, epoch_loss, train_accuracy *
                    100, valid_accuracy * 100, test_accuracy *
                    100, results['final_test'] * 100, results['epoch']))
    print("=" * 120)
    print(
        "syd final: RP:[{}], Train:[{:.2f}]  Best Val:[{:.2f}] at epoch:[{}] | Final Test Acc:[{:.2f}] Adj:[{:.2f}%] Wei:[{:.2f}%]"
        .format(imp_num, results['final_train'] * 100,
                results['highest_valid'] * 100, results['epoch'],
                results['final_test'] * 100, results['adj_spar'],
                results['wei_spar']))
    print("=" * 120)
Exemplo n.º 5
0
def main_get_mask(args, imp_num):

    device = torch.device("cuda:" + str(args.device))
    dataset = PygLinkPropPredDataset(name=args.dataset)
    data = dataset[0]

    # Data(edge_index=[2, 2358104], edge_weight=[2358104, 1], edge_year=[2358104, 1], x=[235868, 128])
    split_edge = dataset.get_edge_split()
    evaluator = Evaluator(args.dataset)

    x = data.x.to(device)

    edge_index = data.edge_index.to(device)

    args.in_channels = data.x.size(-1)
    args.num_tasks = 1

    model = DeeperGCN(args).to(device)
    pruning.add_mask(model, args)

    for name, param in model.named_parameters():
        if 'mask' in name:
            param.requires_grad = False

    predictor = LinkPredictor(args).to(device)
    optimizer = torch.optim.Adam(list(model.parameters()) +
                                 list(predictor.parameters()),
                                 lr=args.lr)

    results = {'epoch': 0}
    keys = ['highest_valid', 'final_train', 'final_test', 'highest_train']
    hits = ['Hits@10', 'Hits@50', 'Hits@100']

    for key in keys:
        results[key] = {k: 0 for k in hits}

    start_epoch = 1
    for epoch in range(start_epoch, args.mask_epochs + 1):

        t0 = time.time()

        epoch_loss = train.train_fixed(model, predictor, x, edge_index,
                                       split_edge, optimizer, args.batch_size,
                                       args)
        result = train.test(model, predictor, x, edge_index, split_edge,
                            evaluator, args.batch_size, args)

        k = 'Hits@50'
        train_result, valid_result, test_result = result[k]

        if train_result > results['highest_train'][k]:
            results['highest_train'][k] = train_result

        if valid_result > results['highest_valid'][k]:
            results['highest_valid'][k] = valid_result
            results['final_train'][k] = train_result
            results['final_test'][k] = test_result
            results['epoch'] = epoch

        epoch_time = (time.time() - t0) / 60
        print(
            time.strftime("%Y-%m-%d %H:%M:%S", time.localtime()) + ' | ' +
            'IMP:[{}] (GET Mask) Epoch:[{}/{}] LOSS:[{:.4f}] Train :[{:.2f}] Valid:[{:.2f}] Test:[{:.2f}] | Update Test:[{:.2f}] at epoch:[{}] Time:[{:.2f}min]'
            .format(imp_num, epoch, args.mask_epochs, epoch_loss,
                    train_result * 100, valid_result * 100, test_result *
                    100, results['final_test'][k] *
                    100, results['epoch'], epoch_time))
    print('-' * 100)
    print(
        "syd : IMP:[{}] (FIX Mask) Final Result Train:[{:.2f}]  Valid:[{:.2f}]  Test:[{:.2f}]"
        .format(imp_num, results['final_train'][k] * 100,
                results['highest_valid'][k] * 100,
                results['final_test'][k] * 100))
    print('-' * 100)