Exemplo n.º 1
0
def main(test_file, vocab_file, embeddings_file, pretrained_file, max_length=50, gpu_index=0, batch_size=128):
    """
    Test the ESIM model with pretrained weights on some dataset.
    Args:
        test_file: The path to a file containing preprocessed NLI data.
        pretrained_file: The path to a checkpoint produced by the
            'train_model' script.
        vocab_size: The number of words in the vocabulary of the model
            being tested.
        embedding_dim: The size of the embeddings in the model.
        hidden_size: The size of the hidden layers in the model. Must match
            the size used during training. Defaults to 300.
        num_classes: The number of classes in the output of the model. Must
            match the value used during training. Defaults to 3.
        batch_size: The size of the batches used for testing. Defaults to 32.
    """
    device = torch.device("cuda:{}".format(gpu_index) if torch.cuda.is_available() else "cpu")
    print(20 * "=", " Preparing for testing ", 20 * "=")
    if platform == "linux" or platform == "linux2":
        checkpoint = torch.load(pretrained_file)
    else:
        checkpoint = torch.load(pretrained_file, map_location=device)
    # Retrieving model parameters from checkpoint.
    hidden_size = checkpoint["model"]["projection.0.weight"].size(0)
    num_classes = checkpoint["model"]["classification.6.weight"].size(0)
    embeddings = load_embeddings(embeddings_file)
    print("\t* Loading test data...")    
    test_data = LCQMC_Dataset(test_file, vocab_file, max_length)
    test_loader = DataLoader(test_data, shuffle=True, batch_size=batch_size)
    print("\t* Building model...")
    model = ESIM(hidden_size, embeddings=embeddings, num_classes=num_classes, device=device).to(device)
    model.load_state_dict(checkpoint["model"])
    print(20 * "=", " Testing ESIM model on device: {} ".format(device), 20 * "=")
    batch_time, total_time, accuracy, auc = test(model, test_loader)
    print("\n-> Average batch processing time: {:.4f}s, total test time: {:.4f}s, accuracy: {:.4f}%, auc: {:.4f}\n".format(batch_time, total_time, (accuracy*100), auc))
def model_load_test(test_df,
                    vocab_file,
                    embeddings_file,
                    pretrained_file,
                    test_prediction_dir,
                    test_prediction_name,
                    mode,
                    num_labels,
                    max_length=50,
                    gpu_index=0,
                    batch_size=128):

    device = torch.device(
        "cuda:{}".format(gpu_index) if torch.cuda.is_available() else "cpu")
    print(20 * "=", " Preparing for testing ", 20 * "=")
    if platform == "linux" or platform == "linux2":
        checkpoint = torch.load(pretrained_file, map_location=device)
    else:
        checkpoint = torch.load(pretrained_file, map_location=device)
    # Retrieving model parameters from checkpoint.
    hidden_size = checkpoint["model"]["projection.0.weight"].size(0)
    num_classes = checkpoint["model"]["classification.6.weight"].size(0)
    embeddings = load_embeddings(embeddings_file)
    print("\t* Loading test data...")
    test_data = My_Dataset(test_df, vocab_file, max_length, mode)
    test_loader = DataLoader(test_data, shuffle=False, batch_size=batch_size)
    print("\t* Building model...")
    model = ESIM(hidden_size,
                 embeddings=embeddings,
                 num_labels=num_labels,
                 device=device).to(device)
    model.load_state_dict(checkpoint["model"])
    print(20 * "=", " Testing ESIM model on device: {} ".format(device),
          20 * "=")
    batch_time, total_time, accuracy, predictions = test(model, test_loader)
    print(
        "\n-> Average batch processing time: {:.4f}s, total test time: {:.4f}s, accuracy: {:.4f}%\n"
        .format(batch_time, total_time, (accuracy * 100)))
    test_prediction = pd.DataFrame({'prediction': predictions})
    if not os.path.exists(test_prediction_dir):
        os.makedirs(test_prediction_dir)
    test_prediction.to_csv(os.path.join(test_prediction_dir,
                                        test_prediction_name),
                           index=False)
Exemplo n.º 3
0
def main(args):
    print(20 * "=", " Preparing for training ", 20 * "=")
    if not os.path.exists(args.result):
        os.makedirs(args.result)

    # -------------------- Loda pretraining model ------------------- #
    checkpoints = torch.load(args.pretrained_file)
    # 可以从模型中直接恢复,也可以直接在前面定义 Retrieving model parameters from checkpoint.
    # hidden_size = checkpoints["model"]["projection.0.weight"].size(0)
    # num_classes = checkpoints["model"]["classification.6.weight"].size(0)
    # -------------------- Data loading ------------------- #
    print("\t* Loading training data...")
    test_data = LCQMC_dataset(args.test_file,
                              args.vocab_file,
                              args.max_length,
                              test_flag=True)
    test_loader = DataLoader(test_data, batch_size=args.batch_size)
    # -------------------- Model definition ------------------- #
    print("\t* Building model...")
    embeddings = load_embeddings(args.embed_file)
    model = ESIM(args, embeddings=embeddings).to(args.device)
    model.load_state_dict(checkpoints["model"])
    print(20 * "=", " Testing ESIM model on device: {} ".format(args.device),
          20 * "=")
    all_predict = predict(model, test_loader)
    index = np.array([], dtype=int)
    for i in range(len(all_predict)):
        index = np.append(index, i)
    # ---------------------生成文件--------------------------
    df_test = pd.DataFrame(columns=['index', 'prediction'])
    df_test['index'] = index
    df_test['prediction'] = all_predict
    df_test.to_csv(args.submit_example_path,
                   index=False,
                   columns=['index', 'prediction'],
                   sep='\t')
Exemplo n.º 4
0
def main(train_file,
         dev_file,
         vocab_file,
         target_dir,
         max_length=50,
         hidden_size=300,
         dropout=0.2,
         num_classes=2,
         epochs=1,
         batch_size=256,
         lr=0.0005,
         patience=5,
         max_grad_norm=10.0,
         gpu_index=0,
         checkpoint=None):
    #device = torch.device("cuda:{}".format(gpu_index) if torch.cuda.is_available() else "cpu")
    device = torch.device("cpu")
    print(20 * "=", " Preparing for training ", 20 * "=")
    # 保存模型的路径
    if not os.path.exists(target_dir):
        os.makedirs(target_dir)
    # -------------------- Data loading ------------------- #
    print("\t* Loading training data...")
    train_data = LCQMC_Dataset(train_file, vocab_file, max_length)
    train_loader = DataLoader(train_data, shuffle=True, batch_size=batch_size)
    print("\t* Loading validation data...")
    dev_data = LCQMC_Dataset(dev_file, vocab_file, max_length)
    dev_loader = DataLoader(dev_data, shuffle=True, batch_size=batch_size)
    # -------------------- Model definition ------------------- #
    print("\t* Building model...")
    # embeddings = load_embeddings(embeddings_file)
    model = ESIM(hidden_size,
                 dropout=dropout,
                 num_labels=num_classes,
                 device=device).to(device)
    # -------------------- Preparation for training  ------------------- #
    print('a')
    criterion = nn.CrossEntropyLoss()
    # 过滤出需要梯度更新的参数
    parameters = filter(lambda p: p.requires_grad, model.parameters())
    print('b')
    # optimizer = optim.Adadelta(parameters, params["LEARNING_RATE"])
    optimizer = torch.optim.Adam(parameters, lr=lr)
    # optimizer = torch.optim.Adam(model.parameters(), lr=lr)
    scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer,
                                                           mode="max",
                                                           factor=0.85,
                                                           patience=0)

    best_score = 0.0
    start_epoch = 1
    # Data for loss curves plot
    epochs_count = []
    train_losses = []
    valid_losses = []
    # Continuing training from a checkpoint if one was given as argument
    if checkpoint:
        checkpoint = torch.load(checkpoint)
        start_epoch = checkpoint["epoch"] + 1
        best_score = checkpoint["best_score"]
        print("\t* Training will continue on existing model from epoch {}...".
              format(start_epoch))
        model.load_state_dict(checkpoint["model"])
        optimizer.load_state_dict(checkpoint["optimizer"])
        epochs_count = checkpoint["epochs_count"]
        train_losses = checkpoint["train_losses"]
        valid_losses = checkpoint["valid_losses"]
    # Compute loss and accuracy before starting (or resuming) training.
    _, valid_loss, valid_accuracy, auc = validate(model, dev_loader, criterion)
    print(
        "\t* Validation loss before training: {:.4f}, accuracy: {:.4f}%, auc: {:.4f}"
        .format(valid_loss, (valid_accuracy * 100), auc))
    # -------------------- Training epochs ------------------- #
    print("\n", 20 * "=", "Training ESIM model on device: {}".format(device),
          20 * "=")
    patience_counter = 0
    for epoch in range(start_epoch, epochs + 1):
        epochs_count.append(epoch)
        print("* Training epoch {}:".format(epoch))
        epoch_time, epoch_loss, epoch_accuracy = train(model, train_loader,
                                                       optimizer, criterion,
                                                       epoch, max_grad_norm)
        train_losses.append(epoch_loss)
        print("-> Training time: {:.4f}s, loss = {:.4f}, accuracy: {:.4f}%".
              format(epoch_time, epoch_loss, (epoch_accuracy * 100)))
        print("* Validation for epoch {}:".format(epoch))
        epoch_time, epoch_loss, epoch_accuracy, epoch_auc = validate(
            model, dev_loader, criterion)
        valid_losses.append(epoch_loss)
        print(
            "-> Valid. time: {:.4f}s, loss: {:.4f}, accuracy: {:.4f}%, auc: {:.4f}\n"
            .format(epoch_time, epoch_loss, (epoch_accuracy * 100), epoch_auc))
        # Update the optimizer's learning rate with the scheduler.
        scheduler.step(epoch_accuracy)
        # Early stopping on validation accuracy.

        if epoch_accuracy < best_score:
            patience_counter += 1
        else:
            best_score = epoch_accuracy
            patience_counter = 0
            torch.save(
                {
                    "epoch": epoch,
                    "model": model.state_dict(),
                    "best_score": best_score,
                    "epochs_count": epochs_count,
                    "train_losses": train_losses,
                    "valid_losses": valid_losses
                }, os.path.join(target_dir, "best.pth.tar"))
            # Save the model at each epoch.
        torch.save(
            {
                "epoch": epoch,
                "model": model.state_dict(),
                "best_score": best_score,
                "optimizer": optimizer.state_dict(),
                "epochs_count": epochs_count,
                "train_losses": train_losses,
                "valid_losses": valid_losses
            }, os.path.join(target_dir, "esim_{}.pth.tar".format(epoch)))

        if patience_counter >= patience:
            print("-> Early stopping: patience limit reached, stopping...")
            break
Exemplo n.º 5
0
def main():
    parser = argparse.ArgumentParser()

    ## Required parameters
    parser.add_argument(
        "--data_dir",
        default=None,
        type=str,
        required=True,
        help=
        "The input data dir. Should contain the .tsv files (or other data files) for the task."
    )
    parser.add_argument("--embeddings_file",
                        default=None,
                        type=str,
                        required=True)
    parser.add_argument("--output_dir", default=None, type=str, required=True)
    parser.add_argument("--train_language",
                        default=None,
                        type=str,
                        required=True)
    parser.add_argument("--train_steps", default=-1, type=int, required=True)
    parser.add_argument("--eval_steps", default=-1, type=int, required=True)
    parser.add_argument(
        "--load_word2vec",
        action='store_true',
        help=
        'if true, load word2vec file for the first time; if false, load generated word-vector csv file'
    )
    parser.add_argument("--generate_word2vec_csv",
                        action='store_true',
                        help='if true, generate word2vec csv file')
    ## normal parameters
    parser.add_argument("--embedding_size", default=300, type=int)
    parser.add_argument("--query_maxlen", default=30, type=int)
    parser.add_argument("--hidden_size", default=300, type=int)
    parser.add_argument("--learning_rate",
                        default=5e-4,
                        type=float,
                        help="The initial learning rate for Adam.")
    parser.add_argument("--num_classes", default=2, type=int)
    parser.add_argument("--dropout", default=0.2, type=float)
    parser.add_argument("--do_test",
                        action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--do_eval",
                        action='store_true',
                        help="Whether to run eval on the dev set.")
    parser.add_argument("--do_eval_train",
                        action='store_true',
                        help="Whether to run eval on the train set.")
    parser.add_argument("--do_train",
                        action='store_true',
                        help="Whether to run training.")
    parser.add_argument("--per_gpu_eval_batch_size", default=10, type=int)
    parser.add_argument("--per_gpu_train_batch_size", default=10, type=int)
    parser.add_argument("--seed", default=1, type=int)
    parser.add_argument("--adam_epsilon",
                        default=1e-8,
                        type=float,
                        help="Epsilon for Adam optimizer.")
    parser.add_argument("--gradient_accumulation_steps", default=1, type=int)

    args = parser.parse_args()

    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
    args.n_gpu = torch.cuda.device_count()
    # device = torch.device("cpu")
    args.device = device

    # Set seed
    set_seed(args)

    logger.info("Training/evaluation parameters %s", args)
    args.eval_batch_size = args.per_gpu_eval_batch_size * max(1, args.n_gpu)

    # Training
    if args.do_train:
        # build model
        logger.info("*** building model ***")
        embeddings = load_embeddings(args)
        model = ESIM(args.hidden_size,
                     embeddings=embeddings,
                     dropout=args.dropout,
                     num_classes=args.num_classes,
                     device=args.device)
        model.to(args.device)

        if args.n_gpu > 1:
            model = torch.nn.DataParallel(model)

        args.train_batch_size = args.per_gpu_train_batch_size * max(
            1, args.n_gpu)

        logger.info("*** Loading training data ***")
        train_data = ATEC_Dataset(os.path.join(args.data_dir, 'train.csv'),
                                  os.path.join(args.data_dir, 'vocab.csv'),
                                  args.query_maxlen)
        train_loader = DataLoader(train_data,
                                  shuffle=True,
                                  batch_size=args.train_batch_size)

        logger.info("*** Loading validation data ***")
        dev_data = ATEC_Dataset(os.path.join(args.data_dir, 'dev.csv'),
                                os.path.join(args.data_dir, 'vocab.csv'),
                                args.query_maxlen)
        dev_loader = DataLoader(dev_data,
                                shuffle=False,
                                batch_size=args.eval_batch_size)

        num_train_optimization_steps = args.train_steps

        # 过滤出需要梯度更新的参数
        parameters = filter(lambda p: p.requires_grad, model.parameters())
        # optimizer = optim.Adadelta(parameters, params["LEARNING_RATE"])
        optimizer = torch.optim.Adam(parameters, lr=args.learning_rate)
        # optimizer = torch.optim.Adam(model.parameters(), lr=lr)
        scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer,
                                                               mode="max",
                                                               factor=0.85,
                                                               patience=0)
        criterion = nn.CrossEntropyLoss()

        global_step = 0

        logger.info("***** Running training *****")
        logger.info("  Num examples = %d", len(train_data))
        logger.info("  Batch size = %d", args.train_batch_size)
        logger.info("  Gradient Accumulation steps = %d",
                    args.gradient_accumulation_steps)
        logger.info("  Num steps = %d", num_train_optimization_steps)

        best_acc = 0
        model.train()
        tr_loss = 0
        nb_tr_examples, nb_tr_steps = 0, 0
        bar = tqdm(range(num_train_optimization_steps),
                   total=num_train_optimization_steps)
        train_loader = cycle(train_loader)

        output_dir = args.output_dir + "eval_results_{}_{}_{}_{}_{}_{}".format(
            'ESIM', str(args.query_maxlen), str(args.learning_rate),
            str(args.train_batch_size), str(args.train_language),
            str(args.train_steps))
        try:
            os.makedirs(output_dir)
        except:
            pass
        output_eval_file = os.path.join(output_dir, 'eval_result.txt')
        with open(output_eval_file, "w") as writer:
            writer.write('*' * 80 + '\n')
        for step in bar:
            batch = next(train_loader)
            batch = tuple(t.to(device) for t in batch)
            q1, q1_lens, q2, q2_lens, labels = batch
            # 正常训练
            optimizer.zero_grad()
            logits, probs = model(q1, q1_lens, q2, q2_lens)
            loss = criterion(logits, labels)
            if args.n_gpu > 1:
                loss = loss.mean()  # mean() to average on multi-gpu.
            if args.gradient_accumulation_steps > 1:
                loss = loss / args.gradient_accumulation_steps
            tr_loss += loss.item()
            train_loss = round(
                tr_loss * args.gradient_accumulation_steps / (nb_tr_steps + 1),
                4)
            bar.set_description("loss {}".format(train_loss))
            nb_tr_examples += q1.size(0)
            nb_tr_steps += 1

            loss.backward()
            # 对抗训练
            # fgm.attack() # 在embedding上添加对抗扰动
            # loss_adv = model(input_ids=input_ids, token_type_ids=segment_ids, attention_mask=input_mask, labels=label_ids)
            # if args.n_gpu > 1:
            #     loss_adv = loss_adv.mean() # mean() to average on multi-gpu.
            # if args.gradient_accumulation_steps > 1:
            #     loss_adv = loss_adv / args.gradient_accumulation_steps
            # loss_adv.backward() # 反向传播,并在正常的grad基础上,累加对抗训练的梯度
            # fgm.restore() # 恢复embedding参数

            if (nb_tr_steps + 1) % args.gradient_accumulation_steps == 0:
                #                 scheduler.step()
                optimizer.step()
                global_step += 1

            if (step + 1) % (args.eval_steps *
                             args.gradient_accumulation_steps) == 0:
                tr_loss = 0
                nb_tr_examples, nb_tr_steps = 0, 0
                logger.info("***** Report result *****")
                logger.info("  %s = %s", 'global_step', str(global_step))
                logger.info("  %s = %s", 'train loss', str(train_loss))

            if args.do_eval and (step + 1) % (
                    args.eval_steps * args.gradient_accumulation_steps) == 0:
                if args.do_eval_train:
                    file_list = ['train.csv', 'dev.csv']
                else:
                    file_list = ['dev.csv']
                for file in file_list:
                    inference_labels = []
                    gold_labels = []
                    inference_logits = []

                    logger.info("***** Running evaluation *****")
                    logger.info("  Num examples = %d", len(dev_data))
                    logger.info("  Batch size = %d", args.eval_batch_size)

                    model.eval()
                    eval_loss, eval_accuracy = 0, 0
                    nb_eval_steps, nb_eval_examples = 0, 0
                    for q1, q1_lens, q2, q2_lens, labels in tqdm(dev_loader):
                        with torch.no_grad():
                            logits, probs = model(q1, q1_lens, q2, q2_lens)
                        probs = probs.detach().cpu().numpy()
                        # print(logits.shape, probs.shape)
                        # label_ids = labels.to('cpu').numpy()
                        inference_labels.append(np.argmax(probs, 1))
                        gold_labels.append(labels)
                        # eval_loss += tmp_eval_loss.mean().item()
                        nb_eval_examples += logits.size(0)
                        nb_eval_steps += 1

                    gold_labels = np.concatenate(gold_labels, 0)
                    inference_labels = np.concatenate(inference_labels, 0)
                    model.train()
                    eval_loss = eval_loss / nb_eval_steps
                    eval_accuracy = get_f1(inference_labels, gold_labels)

                    result = {
                        # 'eval_loss': eval_loss,
                        'eval_accuracy': eval_accuracy,
                        'global_step': global_step,
                        'train_loss': train_loss
                    }

                    if 'dev' in file:
                        with open(output_eval_file, "a") as writer:
                            writer.write(file + '\n')
                            for key in sorted(result.keys()):
                                logger.info("  %s = %s", key, str(result[key]))
                                writer.write("%s = %s\n" %
                                             (key, str(result[key])))
                            writer.write('*' * 80)
                            writer.write('\n')
                    if eval_accuracy > best_acc and 'dev' in file:
                        print("=" * 80)
                        print("Best ACC", eval_accuracy)
                        print("Saving Model......")
                        best_acc = eval_accuracy
                        # Save a trained model
                        model_to_save = model.module if hasattr(
                            model,
                            'module') else model  # Only save the model it-self
                        output_model_file = os.path.join(
                            output_dir, "pytorch_model.bin")
                        torch.save(model_to_save.state_dict(),
                                   output_model_file)
                        print("=" * 80)
                    else:
                        print("=" * 80)
        with open(output_eval_file, "a") as writer:
            writer.write('bert_acc: %f' % best_acc)

    if args.do_test:
        if args.do_train == False:
            output_dir = args.output_dir

        # build model
        logger.info("*** building model ***")
        embeddings = load_embeddings(args)
        model = ESIM(args.hidden_size,
                     embeddings=embeddings,
                     dropout=args.dropout,
                     num_classes=args.num_classes,
                     device=args.device)
        model.load_state_dict(
            torch.load(os.path.join(output_dir, 'pytorch_model.bin')))
        model.to(args.device)

        if args.n_gpu > 1:
            model = torch.nn.DataParallel(model)

        inference_labels = []
        gold_labels = []

        logger.info("*** Loading testing data ***")
        dev_data = ATEC_Dataset(os.path.join(args.data_dir, 'test.csv'),
                                os.path.join(args.data_dir, 'vocab.csv'),
                                args.query_maxlen)
        dev_loader = DataLoader(dev_data,
                                shuffle=False,
                                batch_size=args.eval_batch_size)

        logger.info(" *** Run Prediction ***")
        logger.info("  Num examples = %d", len(dev_data))
        logger.info("  Batch size = %d", args.eval_batch_size)

        model.eval()
        for q1, q1_lens, q2, q2_lens, labels in tqdm(dev_loader):
            with torch.no_grad():
                logits, probs = model(q1, q1_lens, q2, q2_lens)
            probs = probs.detach().cpu().numpy()
            inference_labels.append(np.argmax(probs, 1))
            gold_labels.append(labels)

        gold_labels = np.concatenate(gold_labels, 0)
        logits = np.concatenate(inference_labels, 0)
        test_f1 = get_f1(logits, gold_labels)
        logger.info('predict f1:{}'.format(str(test_f1)))
Exemplo n.º 6
0
    trainer_config = {
        'optimizer': optimizer,
        'batch_size': args.batch_size,
        'log_interval': args.log_interval,
        'model_outfile': args.model_outfile,
        'lr_reduce_factor': args.lr_reduce_factor,
        'patience': args.patience,
        'tensorboard': args.tensorboard,
        'run_label': args.run_label,
        'logger': logger
    }
    trainer = TrainerFactory.get_trainer(args.dataset, model, embedding, train_loader, trainer_config, train_evaluator, test_evaluator, dev_evaluator)

    if not args.skip_training:
        total_params = 0
        for param in model.parameters():
            size = [s for s in param.size()]
            total_params += np.prod(size)
        logger.info('Total number of parameters: %s', total_params)
        trainer.train(args.epochs)

    _, _, state_dict, _, _ = load_checkpoint(args.model_outfile)

    for k, tensor in state_dict.items():
        state_dict[k] = tensor.to(device)

    model.load_state_dict(state_dict)
    if dev_loader:
        evaluate_dataset('dev', dataset_cls, model, embedding, dev_loader, args.batch_size, args.device)
    evaluate_dataset('test', dataset_cls, model, embedding, test_loader, args.batch_size, args.device, args.keep_results)
Exemplo n.º 7
0
def main():
    device = args.device
    print(20 * "=", " Preparing for training ", 20 * "=")
    # 保存模型的路径
    if not os.path.exists(args.target_dir):
        os.makedirs(args.target_dir)
    # -------------------- Data loading ------------------- #
    print("Loading data......")
    train_loader, dev_loader, test_loader, SEN1, SEN2 = load_data(
        args.batch_size, device)
    embedding = SEN1.vectors
    vocab_size = len(embedding)
    print("vocab_size:", vocab_size)
    # -------------------- Model definition ------------------- #
    print("\t* Building model...")
    model = ESIM(args.hidden_size,
                 embedding=embedding,
                 dropout=args.dropout,
                 num_labels=args.num_classes,
                 device=device).to(device)
    # -------------------- Preparation for training  ------------------- #
    criterion = nn.CrossEntropyLoss()
    # 过滤出需要梯度更新的参数
    parameters = filter(lambda p: p.requires_grad, model.parameters())
    optimizer = torch.optim.Adam(parameters, lr=args.lr)
    scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer,
                                                           mode="min",
                                                           factor=0.1,
                                                           patience=10)

    best_score = 0.0
    if args.ckp:
        checkpoint = torch.load(os.path.join(args.target_dir, args.ckp))
        best_score = checkpoint["best_score"]
        model.load_state_dict(checkpoint["model"])
        optimizer.load_state_dict(checkpoint["optimizer"])
        _, valid_loss, valid_accuracy = validate(model, dev_loader, criterion)
        print("\t* Validation loss before training: {:.4f}, accuracy: {:.4f}%".
              format(valid_loss, (valid_accuracy * 100)))

    # -------------------- Training epochs ------------------- #
    print("\n", 20 * "=", "Training ESIM model on device: {}".format(device),
          20 * "=")
    patience_counter = 0
    for epoch in range(args.num_epoch):
        print("* Training epoch {}:".format(epoch))
        epoch_time, epoch_loss, epoch_accuracy = train(model, train_loader,
                                                       optimizer, criterion,
                                                       args.max_grad_norm,
                                                       device)
        print("-> Training time: {:.4f}s, loss = {:.4f}, accuracy: {:.4f}%".
              format(epoch_time, epoch_loss, (epoch_accuracy * 100)))
        print("* Validation for epoch {}:".format(epoch))
        epoch_time, epoch_loss, epoch_accuracy = validate(
            model, dev_loader, criterion, device)
        print("-> Valid. time: {:.4f}s, loss: {:.4f}, accuracy: {:.4f}%\n".
              format(epoch_time, epoch_loss, (epoch_accuracy * 100)))
        # Update the optimizer's learning rate with the scheduler.
        scheduler.step(epoch_accuracy)

        # Early stopping on validation accuracy.
        if epoch_accuracy < best_score:
            patience_counter += 1
        else:
            print("save model!!!!")
            best_score = epoch_accuracy
            patience_counter = 0
            torch.save(
                {
                    "model": model.state_dict(),
                    "best_score": best_score,
                    "optimizer": optimizer.state_dict(),
                }, os.path.join(args.target_dir, "best.pth.tar"))

        if patience_counter >= 5:
            print("-> Early stopping: patience limit reached, stopping...")
            break

    # ##-------------------- Testing epochs ------------------- #
    # print(20 * "=", " Testing ", 20 * "=")
    # if args.ckp:
    #     checkpoint = torch.load(os.path.join(args.target_dir, args.ckp))
    #     best_score = checkpoint["best_score"]
    #     model.load_state_dict(checkpoint["model"])
    #     optimizer.load_state_dict(checkpoint["optimizer"])
    #
    # print("best_score:", best_score)
    # all_labels = test(model, test_loader, device)
    # print(all_labels[:10])
    # target_label = [id2label[id] for id in all_labels]
    # print(target_label[:10])
    # with open(os.path.join(args.target_dir, 'result.txt'), 'w+') as f:
    #     for label in target_label:
    #         f.write(label + '\n')

    del train_loader
    del dev_loader
    del test_loader
    del SEN1
    del SEN2
    del embedding
Exemplo n.º 8
0
    print('\tTrain Loss: %.3f | Train Acc: %.2f %%' %
          (train_loss, train_acc * 100))
    print('\t Val. Loss: %.3f |  Val. Acc: %.2f %%' %
          (valid_loss, valid_acc * 100))

    if valid_loss < best_valid_loss:
        best_valid_loss = valid_loss
        best_valid_acc = valid_acc
        torch.save(model.state_dict(), './saved_model/esim.pt')
        print("New model saved!")
        f_log.write("New model saved!\n")

    f_log.flush()
    f_log.close()

model.load_state_dict(torch.load('./saved_model/esim.pt'))
model.eval()

f_valid = open("data/test-set.data", "r", encoding='utf-8')
f_res = open('prediction.txt', 'w')
for i, rowlist in enumerate(f_valid):
    rowlist = rowlist[:-1].split('\t')
    input_sent = []
    for sent in rowlist[:2]:
        tokenized = tokenizer(sent)
        indexed = [TEXT.vocab.stoi[t] for t in tokenized]
        tensor = torch.LongTensor(indexed).to(device)
        tensor = tensor.unsqueeze(1)
        input_sent.append(tensor)
    ans = F.softmax(model(input_sent[0], input_sent[1])[0])[1].item()
    f_res.write(str(ans) + '\n')
def model_train_validate_test(train_df,
                              dev_df,
                              test_df,
                              embeddings_file,
                              vocab_file,
                              target_dir,
                              mode,
                              num_labels=2,
                              max_length=50,
                              hidden_size=200,
                              dropout=0.2,
                              epochs=50,
                              batch_size=256,
                              lr=0.0005,
                              patience=5,
                              max_grad_norm=10.0,
                              gpu_index=0,
                              if_save_model=False,
                              checkpoint=None):
    device = torch.device(
        "cuda:{}".format(gpu_index) if torch.cuda.is_available() else "cpu")
    print(20 * "=", " Preparing for training ", 20 * "=")
    # 保存模型的路径
    if not os.path.exists(target_dir):
        os.makedirs(target_dir)
    # -------------------- Data loading ------------------- #
    print("\t* Loading training data...")
    train_data = My_Dataset(train_df, vocab_file, max_length, mode)
    train_loader = DataLoader(train_data, shuffle=True, batch_size=batch_size)
    print("\t* Loading validation data...")
    dev_data = My_Dataset(dev_df, vocab_file, max_length, mode)
    dev_loader = DataLoader(dev_data, shuffle=True, batch_size=batch_size)
    print("\t* Loading test data...")
    test_data = My_Dataset(test_df, vocab_file, max_length, mode)
    test_loader = DataLoader(test_data, shuffle=False, batch_size=batch_size)
    # -------------------- Model definition ------------------- #
    print("\t* Building model...")
    if (embeddings_file is not None):
        embeddings = load_embeddings(embeddings_file)
    else:
        embeddings = None
    model = ESIM(hidden_size,
                 embeddings=embeddings,
                 dropout=dropout,
                 num_labels=num_labels,
                 device=device).to(device)
    total_params = sum(p.numel() for p in model.parameters())
    print(f'{total_params:,} total parameters.')
    total_trainable_params = sum(p.numel() for p in model.parameters()
                                 if p.requires_grad)
    print(f'{total_trainable_params:,} training parameters.')
    # -------------------- Preparation for training  ------------------- #
    criterion = nn.CrossEntropyLoss()
    # 过滤出需要梯度更新的参数
    parameters = filter(lambda p: p.requires_grad, model.parameters())
    # optimizer = optim.Adadelta(parameters, params["LEARNING_RATE"])
    optimizer = torch.optim.Adam(parameters, lr=lr)
    # optimizer = torch.optim.Adam(model.parameters(), lr=lr)
    scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer,
                                                           mode="max",
                                                           factor=0.85,
                                                           patience=0)
    best_score = 0.0
    start_epoch = 1
    # Data for loss curves plot
    epochs_count = []
    train_losses = []
    valid_losses = []
    # Continuing training from a checkpoint if one was given as argument
    if checkpoint:
        checkpoint = torch.load(checkpoint)
        start_epoch = checkpoint["epoch"] + 1
        best_score = checkpoint["best_score"]
        print("\t* Training will continue on existing model from epoch {}...".
              format(start_epoch))
        model.load_state_dict(checkpoint["model"])
        optimizer.load_state_dict(checkpoint["optimizer"])
        epochs_count = checkpoint["epochs_count"]
        train_losses = checkpoint["train_losses"]
        valid_losses = checkpoint["valid_losses"]
    # Compute loss and accuracy before starting (or resuming) training.
    _, valid_loss, valid_accuracy, _, = validate(model, dev_loader, criterion)
    print("\t* Validation loss before training: {:.4f}, accuracy: {:.4f}%".
          format(valid_loss, (valid_accuracy * 100)))
    # -------------------- Training epochs ------------------- #
    print("\n", 20 * "=", "Training ESIM model on device: {}".format(device),
          20 * "=")
    patience_counter = 0
    for epoch in range(start_epoch, epochs + 1):
        epochs_count.append(epoch)
        print("* Training epoch {}:".format(epoch))
        epoch_time, epoch_loss, epoch_accuracy = train(model, train_loader,
                                                       optimizer, criterion,
                                                       epoch, max_grad_norm)
        train_losses.append(epoch_loss)
        print("-> Training time: {:.4f}s, loss = {:.4f}, accuracy: {:.4f}%".
              format(epoch_time, epoch_loss, (epoch_accuracy * 100)))
        print("* Validation for epoch {}:".format(epoch))
        epoch_time, epoch_loss, epoch_accuracy, _, = validate(
            model, dev_loader, criterion)
        valid_losses.append(epoch_loss)
        print("-> Valid. time: {:.4f}s, loss: {:.4f}, accuracy: {:.4f}%\n".
              format(epoch_time, epoch_loss, (epoch_accuracy * 100)))
        # Update the optimizer's learning rate with the scheduler.
        scheduler.step(epoch_accuracy)
        # Early stopping on validation accuracy.
        if epoch_accuracy < best_score:
            patience_counter += 1
        else:
            best_score = epoch_accuracy
            patience_counter = 0

            if (if_save_model):
                torch.save(
                    {
                        "epoch": epoch,
                        "model": model.state_dict(),
                        "best_score": best_score,
                        "epochs_count": epochs_count,
                        "train_losses": train_losses,
                        "valid_losses": valid_losses
                    }, os.path.join(target_dir, "best.pth.tar"))

                print("save model succesfully!\n")

            print("* Test for epoch {}:".format(epoch))
            _, _, test_accuracy, predictions = validate(
                model, test_loader, criterion)
            print("Test accuracy: {:.4f}%\n".format(test_accuracy))
            test_prediction = pd.DataFrame({'prediction': predictions})
            test_prediction.to_csv(os.path.join(target_dir,
                                                "test_prediction.csv"),
                                   index=False)

        if patience_counter >= patience:
            print("-> Early stopping: patience limit reached, stopping...")
            break
Exemplo n.º 10
0
def main(test_q1_file,
         test_q2_file,
         test_labels_file,
         pretrained_file,
         gpu_index=0,
         batch_size=64):
    """
    Test the ESIM model with pretrained weights on some dataset.
    Args:
        test_file: The path to a file containing preprocessed NLI data.
        pretrained_file: The path to a checkpoint produced by the
            'train_model' script.
        vocab_size: The number of words in the vocabulary of the model
            being tested.
        embedding_dim: The size of the embeddings in the model.
        hidden_size: The size of the hidden layers in the model. Must match
            the size used during training. Defaults to 300.
        num_classes: The number of classes in the output of the model. Must
            match the value used during training. Defaults to 3.
        batch_size: The size of the batches used for testing. Defaults to 32.
    """
    device = torch.device(
        "cuda:{}".format(gpu_index) if torch.cuda.is_available() else "cpu")

    print(20 * "=", " Preparing for testing ", 20 * "=")

    if platform == "linux" or platform == "linux2":
        checkpoint = torch.load(pretrained_file)
    else:
        checkpoint = torch.load(pretrained_file, map_location="cuda:0")

    # Retrieving model parameters from checkpoint.
    vocab_size = checkpoint["model"]["word_embedding.weight"].size(0)
    embedding_dim = checkpoint["model"]['word_embedding.weight'].size(1)
    hidden_size = checkpoint["model"]["projection.0.weight"].size(0)
    num_classes = checkpoint["model"]["classification.6.weight"].size(0)

    print("\t* Loading test data...")
    test_q1 = np.load(test_q1_file)
    test_q2 = np.load(test_q2_file)
    test_labels = np.load(test_labels_file)
    #    test_labels = label_transformer(test_labels)

    test_data = {"q1": test_q1, "q2": test_q2, "labels": test_labels}

    test_data = QQPDataset(test_data)
    test_loader = DataLoader(test_data, shuffle=False, batch_size=batch_size)

    print("\t* Building model...")
    model = ESIM(vocab_size,
                 embedding_dim,
                 hidden_size,
                 num_classes=num_classes,
                 device=device).to(device)

    model.load_state_dict(checkpoint["model"])

    print(20 * "=", " Testing ESIM model on device: {} ".format(device),
          20 * "=")
    batch_time, total_time, accuracy = test(model, test_loader)

    print()
    print(
        "-> Average batch processing time: {:.4f}s, total test time: {:.4f}s, accuracy: {:.4f}%"
        .format(batch_time, total_time, (accuracy * 100)))
    print()
Exemplo n.º 11
0
def main(args):
    print(20 * "=", " Preparing for training ", 20 * "=")
    # 保存模型的路径
    if not os.path.exists(args.target_dir):
        os.makedirs(args.target_dir)

    # -------------------- Data loading ------------------- #
    print("\t* Loading training data...")
    # train_data = LCQMC_dataset(args.train_file, args.vocab_file, args.max_length, test_flag=False)
    train_data = LCQMC_dataset(args.train_file, args.vocab_file, args.max_length, test_flag=False)
    train_loader = DataLoader(train_data, batch_size=args.batch_size, shuffle=True)
    print("\t* Loading valid data...")
    dev_data = LCQMC_dataset(args.dev_file, args.vocab_file, args.max_length, test_flag=False)
    dev_loader = DataLoader(dev_data, batch_size=args.batch_size, shuffle=True)
    # -------------------- Model definition ------------------- #
    print("\t* Building model...")
    embeddings = load_embeddings(args.embed_file)
    model = ESIM(args, embeddings=embeddings).to(args.device)

    # -------------------- Preparation for training  ------------------- #
    criterion = nn.CrossEntropyLoss()  # 交叉熵损失函数
    # 过滤出需要梯度更新的参数
    parameters = filter(lambda p: p.requires_grad, model.parameters())
    optimizer = torch.optim.Adam(parameters, lr=args.lr)  # 优化器
    # 学习计划
    scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='max',
                                                           factor=0.85, patience=0)

    best_score = 0.0
    start_epoch = 1

    epochs_count = []
    train_losses = []
    valid_losses = []
    # Continuing training from a checkpoint if one was given as argument
    if args.checkpoint:
        # 从文件中加载checkpoint数据, 从而继续训练模型
        checkpoints = torch.load(args.checkpoint)
        start_epoch = checkpoints["epoch"] + 1
        best_score = checkpoints["best_score"]
        print("\t* Training will continue on existing model from epoch {}...".format(start_epoch))
        model.load_state_dict(checkpoints["model"])  # 模型部分
        optimizer.load_state_dict(checkpoints["optimizer"])
        epochs_count = checkpoints["epochs_count"]
        train_losses = checkpoints["train_losses"]
        valid_losses = checkpoints["valid_losses"]

        # 这里改为只有从以前加载的checkpoint中才进行计算 valid, Compute loss and accuracy before starting (or resuming) training.
        _, valid_loss, valid_accuracy, auc = validate(model, dev_loader, criterion)
        print("\t* Validation loss before training: {:.4f}, accuracy: {:.4f}%, auc: {:.4f}"
              .format(valid_loss, (valid_accuracy * 100), auc))
    # -------------------- Training epochs ------------------- #
    print("\n", 20 * "=", "Training ESIM model on device: {}".format(args.device), 20 * "=")
    patience_counter = 0

    for epoch in range(start_epoch, args.epochs + 1):
        epochs_count.append(epoch)
        print("* Training epoch {}:".format(epoch))
        epoch_time, epoch_loss, epoch_accuracy = train(model, train_loader, optimizer,
                                                       criterion, epoch, args.max_grad_norm)
        train_losses.append(epoch_loss)
        print("-> Training time: {:.4f}s, loss = {:.4f}, accuracy: {:.4f}%"
              .format(epoch_time, epoch_loss, (epoch_accuracy * 100)))

        print("* Validation for epoch {}:".format(epoch))
        epoch_time, epoch_loss, epoch_accuracy, epoch_auc = validate(model, train_loader, criterion)
        valid_losses.append(epoch_loss)
        print("-> Valid. time: {:.4f}s, loss: {:.4f}, accuracy: {:.4f}%, auc: {:.4f}\n"
              .format(epoch_time, epoch_loss, (epoch_accuracy * 100), epoch_auc))
        # Update the optimizer's learning rate with the scheduler.
        scheduler.step(epoch_accuracy)
        # Early stopping on validation accuracy.
        if epoch_accuracy < best_score:
            patience_counter += 1
        else:
            best_score = epoch_accuracy
            patience_counter = 0
            # 保存最好的结果,需要保存的参数,这些参数在checkpoint中都能找到
            torch.save(
                {
                    "epoch": epoch,
                    "model": model.state_dict(),
                    "best_score": best_score,
                    "epochs_count": epochs_count,
                    "train_losses": train_losses,
                    "valid_losses": valid_losses},
                os.path.join(args.target_dir, "new_best.pth.tar"))
        # 保存每个epoch的结果 Save the model at each epoch.(这里可要可不要)
        torch.save(
            {
                "epoch": epoch,
                "model": model.state_dict(),
                "best_score": best_score,
                "optimizer": optimizer.state_dict(),
                "epochs_count": epochs_count,
                "train_losses": train_losses,
                "valid_losses": valid_losses},
            os.path.join(args.target_dir, "new_esim_{}.pth.tar".format(epoch)))

        if patience_counter >= args.patience:
            print("-> Early stopping: patience limit reached, stopping...")
            break
Exemplo n.º 12
0
def main(train_q1_file,
         train_q2_file,
         train_labels_file,
         dev_q1_file,
         dev_q2_file,
         dev_labels_file,
         embeddings_file,
         target_dir,
         hidden_size=128,
         dropout=0.5,
         num_classes=2,
         epochs=15,
         batch_size=64,
         lr=0.001,
         patience=5,
         max_grad_norm=10.0,
         gpu_index=0,
         checkpoint=None):

    device = torch.device(
        "cuda:{}".format(gpu_index) if torch.cuda.is_available() else "cpu")

    print(20 * "=", " Preparing for training ", 20 * "=")

    # 保存模型的路径
    if not os.path.exists(target_dir):
        os.makedirs(target_dir)

    # -------------------- Data loading ------------------- #
    print("\t* Loading training data...")
    train_q1 = np.load(train_q1_file)
    train_q2 = np.load(train_q2_file)
    train_labels = np.load(train_labels_file)
    #    train_labels = label_transformer(train_labels)

    train_data = {"q1": train_q1, "q2": train_q2, "labels": train_labels}

    train_data = QQPDataset(train_data)
    train_loader = DataLoader(train_data, shuffle=True, batch_size=batch_size)

    print("\t* Loading validation data...")
    dev_q1 = np.load(dev_q1_file)
    dev_q2 = np.load(dev_q2_file)
    dev_labels = np.load(dev_labels_file)
    #    dev_labels = label_transformer(dev_labels)

    dev_data = {"q1": dev_q1, "q2": dev_q2, "labels": dev_labels}

    dev_data = QQPDataset(dev_data)
    dev_loader = DataLoader(dev_data, shuffle=True, batch_size=batch_size)

    # -------------------- Model definition ------------------- #
    print("\t* Building model...")
    embeddings = torch.tensor(np.load(embeddings_file),
                              dtype=torch.float).to(device)

    model = ESIM(embeddings.shape[0],
                 embeddings.shape[1],
                 hidden_size,
                 embeddings=embeddings,
                 dropout=dropout,
                 num_classes=num_classes,
                 device=device).to(device)

    # -------------------- Preparation for training  ------------------- #
    criterion = nn.CrossEntropyLoss()
    # 过滤出需要梯度更新的参数
    parameters = filter(lambda p: p.requires_grad, model.parameters())
    # optimizer = optim.Adadelta(parameters, params["LEARNING_RATE"])
    optimizer = torch.optim.Adam(parameters, lr=lr)
    # optimizer = torch.optim.Adam(model.parameters(), lr=lr)
    scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer,
                                                           mode="max",
                                                           factor=0.85,
                                                           patience=0)

    best_score = 0.0
    start_epoch = 1

    # Data for loss curves plot
    epochs_count = []
    train_losses = []
    valid_losses = []

    # Continuing training from a checkpoint if one was given as argument
    if checkpoint:
        checkpoint = torch.load(checkpoint)
        start_epoch = checkpoint["epoch"] + 1
        best_score = checkpoint["best_score"]

        print("\t* Training will continue on existing model from epoch {}...".
              format(start_epoch))

        model.load_state_dict(checkpoint["model"])
        optimizer.load_state_dict(checkpoint["optimizer"])
        epochs_count = checkpoint["epochs_count"]
        train_losses = checkpoint["train_losses"]
        valid_losses = checkpoint["valid_losses"]

    # Compute loss and accuracy before starting (or resuming) training.
    _, valid_loss, valid_accuracy = validate(model, dev_loader, criterion)
    print("\t* Validation loss before training: {:.4f}, accuracy: {:.4f}%".
          format(valid_loss, (valid_accuracy * 100)))

    # -------------------- Training epochs ------------------- #
    print("\n", 20 * "=", "Training ESIM model on device: {}".format(device),
          20 * "=")

    patience_counter = 0
    for epoch in range(start_epoch, epochs + 1):
        epochs_count.append(epoch)

        print("* Training epoch {}:".format(epoch))
        epoch_time, epoch_loss, epoch_accuracy = train(model, train_loader,
                                                       optimizer, criterion,
                                                       epoch, max_grad_norm)

        train_losses.append(epoch_loss)
        print("-> Training time: {:.4f}s, loss = {:.4f}, accuracy: {:.4f}%".
              format(epoch_time, epoch_loss, (epoch_accuracy * 100)))

        print("* Validation for epoch {}:".format(epoch))
        epoch_time, epoch_loss, epoch_accuracy = validate(
            model, dev_loader, criterion)

        valid_losses.append(epoch_loss)
        print("-> Valid. time: {:.4f}s, loss: {:.4f}, accuracy: {:.4f}%\n".
              format(epoch_time, epoch_loss, (epoch_accuracy * 100)))

        # Update the optimizer's learning rate with the scheduler.
        scheduler.step(epoch_accuracy)

        # Early stopping on validation accuracy.
        if epoch_accuracy < best_score:
            patience_counter += 1
        else:
            best_score = epoch_accuracy
            patience_counter = 0
            # Save the best model. The optimizer is not saved to avoid having
            # a checkpoint file that is too heavy to be shared. To resume
            # training from the best model, use the 'esim_*.pth.tar'
            # checkpoints instead.
            torch.save(
                {
                    "epoch": epoch,
                    "model": model.state_dict(),
                    "best_score": best_score,
                    "epochs_count": epochs_count,
                    "train_losses": train_losses,
                    "valid_losses": valid_losses
                }, os.path.join(target_dir, "best.pth.tar"))

        # Save the model at each epoch.
        torch.save(
            {
                "epoch": epoch,
                "model": model.state_dict(),
                "best_score": best_score,
                "optimizer": optimizer.state_dict(),
                "epochs_count": epochs_count,
                "train_losses": train_losses,
                "valid_losses": valid_losses
            }, os.path.join(target_dir, "esim_{}.pth.tar".format(epoch)))

        if patience_counter >= patience:
            print("-> Early stopping: patience limit reached, stopping...")
            break