Exemplo n.º 1
0
def main(args):
    # torch.cuda.set_device(args.gpu)

    # Network Builders
    builder = ModelBuilder()
    
    enc_out = torch.randn(([1,2048,64,64]))
    net_encoder = builder.build_encoder(
        weights="baseline-resnet50dilated-ppm_deepsup/encoder_epoch_20.pth")
    gcu = GraphConv()#, V=2), GCU(X=enc_out, V=4), GCU(X=enc_out, V=8),GCU(X=enc_out, V=32)]

    crit = nn.NLLLoss(ignore_index=-1)

    segmentation_module = SegmentationModule(net_encoder, gcu, crit, tr=False)

    # print("Prinitng Params", gcu[1].parameters())
    for m in gcu.parameters():
        print("Hello",m.shape,m.name,m)
    print("dddddddddddddddd", len(list(gcu.parameters())))
    for m in gcu.modules():
        print("Prining", m.parameters())
    # Dataset and Loader
    if len(args.test_imgs) == 1 and os.path.isdir(args.test_imgs[0]):
        test_imgs = find_recursive(args.test_imgs[0])

    else:
        test_imgs = args.test_imgs


    list_test = [{'fpath_img': x} for x in test_imgs]
    
    dataset_test = TestDataset(
        list_test, args, max_sample=-1)


    loader_test = torchdata.DataLoader(
        dataset_test,
        batch_size=1,
        shuffle=False,
        collate_fn=user_scattered_collate,
        num_workers=5,
        drop_last=True)


    # Main loop
    test(segmentation_module, loader_test, args)

    print('Inference done!')
Exemplo n.º 2
0
def main(args):
    # Network Builders
    builder = ModelBuilder()

    crit = nn.NLLLoss(ignore_index=-1)
    crit = crit.cuda()
    net_encoder = builder.build_encoder(
        weights="baseline-resnet50dilated-ppm_deepsup/encoder_epoch_20.pth")
    gcu = GraphConv(
        batch=args.batch_size_per_gpu
    )  #, V=2), GCU(X=enc_out, V=4), GCU(X=enc_out, V=8),GCU(X=enc_out, V=32)]
    # gcu.load_state_dict(torch.load("ckpt/baseline-resnet50dilated-ngpus1-batchSize1-imgMaxSize1000-paddingConst8-segmDownsampleRate8-epoch20/decoder_epoch_20.pth"))
    segmentation_module = SegmentationModule(net_encoder, gcu, crit, tr=True)

    # Dataset and Loader
    dataset_train = TrainDataset(args.list_train,
                                 args,
                                 batch_per_gpu=args.batch_size_per_gpu)

    loader_train = torchdata.DataLoader(
        dataset_train,
        batch_size=len(args.gpus),  # we have modified data_parallel
        shuffle=False,  # we do not use this param
        collate_fn=user_scattered_collate,
        num_workers=int(args.workers),
        drop_last=True,
        pin_memory=True)

    print('1 Epoch = {} iters'.format(args.epoch_iters))

    # create loader iterator
    iterator_train = iter(loader_train)

    # load nets into gpu
    if len(args.gpus) > 4:
        segmentation_module = UserScatteredDataParallel(segmentation_module,
                                                        device_ids=args.gpus)
        # For sync bn
        patch_replication_callback(segmentation_module)

# segmentation_module.cuda()

# Set up optimizers
# print(gcu[0].parameters())
    nets = (net_encoder, gcu, crit)
    optimizers, par = create_optimizers(nets, args)

    # Main loop
    history = {'train': {'epoch': [], 'loss': [], 'acc': []}}
    vis = visdom.Visdom()
    win = vis.line(np.array([5.7]),
                   opts=dict(xlabel='epochs',
                             ylabel='Loss',
                             title='Training Loss V=16',
                             legend=['Loss']))

    for epoch in range(args.start_epoch, args.num_epoch + 1):
        lss = train(segmentation_module, iterator_train, optimizers, history,
                    epoch, par, vis, win, args)

        # checkpointing
        checkpoint(nets, history, args, epoch)

    print('Training Done!')