Exemplo n.º 1
0
    text_encoder = RNN_ENCODER(dataset.n_words, nhidden=cfg.TEXT.EMBEDDING_DIM)
    state_dict = torch.load(cfg.TEXT.DAMSM_NAME,
                            map_location=lambda storage, loc: storage)
    text_encoder.load_state_dict(state_dict)
    text_encoder.cuda()

    for p in text_encoder.parameters():
        p.requires_grad = False
    text_encoder.eval()

    state_epoch = args.resume_epoch

    optimizerG = torch.optim.Adam(netG.parameters(),
                                  lr=0.0001,
                                  betas=(0.0, 0.9))
    optimizerD = torch.optim.Adam(netD.parameters(),
                                  lr=0.0004,
                                  betas=(0.0, 0.9))

    if state_epoch != 0:
        netG.load_state_dict(
            torch.load('%s/models/netG_%03d.pth' % (output_dir, state_epoch),
                       map_location='cpu'))
        netD.load_state_dict(
            torch.load('%s/models/netD_%03d.pth' % (output_dir, state_epoch),
                       map_location='cpu'))
        netG = netG.cuda()
        netD = netD.cuda()
        optimizerG.load_state_dict(
            torch.load('%s/models/optimizerG.pth' % (output_dir)))
        optimizerD.load_state_dict(
Exemplo n.º 2
0
class AnoGAN:
    """AnoGAN Class
    """
    def __init__(self, opt):
        # super(AnoGAN, self).__init__(opt, dataloader)

        # Initalize variables.
        self.opt = opt

        self.niter = self.opt.niter
        self.start_iter = 0
        self.netd_niter = 5
        self.test_iter = 100
        self.lr = self.opt.lr
        self.batchsize = {'train': self.opt.batchsize, 'test': 1}

        self.pretrained = False

        self.phase = 'train'
        self.outf = self.opt.experiment_group
        self.algorithm = 'wgan'

        # LOAD DATA SET
        self.dataloader = {
            'train':
            provider('train',
                     opt.category,
                     batch_size=self.batchsize['train'],
                     num_workers=4),
            'test':
            provider('test',
                     opt.category,
                     batch_size=self.batchsize['test'],
                     num_workers=4)
        }

        self.trn_dir = os.path.join(self.outf, self.opt.experiment_name,
                                    'train')
        self.tst_dir = os.path.join(self.outf, self.opt.experiment_name,
                                    'test')

        self.test_img_dir = os.path.join(self.outf, self.opt.experiment_name,
                                         'test', 'images')
        if not os.path.isdir(self.test_img_dir):
            os.makedirs(self.test_img_dir)

        self.best_test_dir = os.path.join(self.outf, self.opt.experiment_name,
                                          'test', 'best_images')
        if not os.path.isdir(self.best_test_dir):
            os.makedirs(self.best_test_dir)

        self.weight_dir = os.path.join(self.trn_dir, 'weights')
        if not os.path.exists(self.weight_dir): os.makedirs(self.weight_dir)

        # -- Misc attributes
        self.epoch = 0

        self.l_con = l1_loss
        self.l_enc = l2_loss

        ##
        # Create and initialize networks.
        self.netg = NetG().cuda()
        self.netd = NetD().cuda()

        # Setup optimizer
        self.optimizer_d = optim.RMSprop(self.netd.parameters(), lr=self.lr)
        self.optimizer_g = optim.Adam(self.netg.parameters(), lr=self.lr)

        ##
        self.weight_path = os.path.join(self.outf, self.opt.experiment_name,
                                        'train', 'weights')
        if os.path.exists(self.weight_path) and len(
                os.listdir(self.weight_path)) == 2:
            print("Loading pre-trained networks...\n")
            self.netg.load_state_dict(
                torch.load(os.path.join(self.weight_path,
                                        'netG.pth'))['state_dict'])
            self.netd.load_state_dict(
                torch.load(os.path.join(self.weight_path,
                                        'netD.pth'))['state_dict'])

            self.optimizer_g.load_state_dict(
                torch.load(os.path.join(self.weight_path,
                                        'netG.pth'))['optimizer'])
            self.optimizer_d.load_state_dict(
                torch.load(os.path.join(self.weight_path,
                                        'netD.pth'))['optimizer'])

            self.start_iter = torch.load(
                os.path.join(self.weight_path, 'netG.pth'))['epoch']

    ##
    def start(self):
        """ Train the model
        """

        ##
        # TRAIN
        # self.total_steps = 0
        best_criterion = -1  #float('inf')
        best_auc = -1

        # Train for niter epochs.
        # print(">> Training model %s." % self.name)
        for self.epoch in range(self.start_iter, self.niter):
            # Train for one epoch
            mean_wass = self.train()

            (auc, res, best_rec, best_threshold), res_total = self.test()
            message = ''
            # message += 'criterion: (%.3f+%.3f)/2=%.3f ' % (best_rec[0], best_rec[1], res)
            # message += 'best threshold: %.3f ' % best_threshold
            message += 'Wasserstein Distance:%.3d ' % mean_wass
            message += 'AUC: %.3f ' % auc

            print(message)

            torch.save(
                {
                    'epoch': self.epoch + 1,
                    'state_dict': self.netg.state_dict(),
                    'optimizer': self.optimizer_g.state_dict()
                }, '%s/netG.pth' % (self.weight_dir))

            torch.save(
                {
                    'epoch': self.epoch + 1,
                    'state_dict': self.netd.state_dict(),
                    'optimizer': self.optimizer_d.state_dict()
                }, '%s/netD.pth' % (self.weight_dir))

            if auc > best_auc:
                best_auc = auc
                new_message = "******** New optimal found, saving state ********"
                message = message + '\n' + new_message
                print(new_message)

                for img in os.listdir(self.best_test_dir):
                    os.remove(os.path.join(self.best_test_dir, img))

                for img in os.listdir(self.test_img_dir):
                    shutil.copyfile(os.path.join(self.test_img_dir, img),
                                    os.path.join(self.best_test_dir, img))

                shutil.copyfile('%s/netG.pth' % (self.weight_dir),
                                '%s/netg_best.pth' % (self.weight_dir))

            log_name = os.path.join(self.outf, self.opt.experiment_name,
                                    'loss_log.txt')
            message = 'Epoch%3d:' % self.epoch + ' ' + message
            with open(log_name, "a") as log_file:
                if self.epoch == 0:
                    log_file.write('\n\n')
                log_file.write('%s\n' % message)

        print(">> Training %s Done..." % self.opt.experiment_name)

    ##
    def train(self):
        """ Train the model for one epoch.
        """
        print("\n>>> Epoch %d/%d, Running " % (self.epoch + 1, self.niter) +
              self.opt.experiment_name)

        self.netg.train()
        self.netd.train()
        # for p in self.netg.parameters(): p.requires_grad = True

        mean_wass = 0

        tk0 = tqdm(self.dataloader['train'],
                   total=len(self.dataloader['train']))
        for i, itr in enumerate(tk0):
            input, _ = itr
            input = input.cuda()
            wasserstein_d = None
            # if self.algorithm == 'wgan':
            # train NetD
            for _ in range(self.netd_niter):
                # for p in self.netd.parameters(): p.requires_grad = True
                self.optimizer_d.zero_grad()

                # forward_g
                latent_i = torch.rand(self.batchsize['train'], 64, 1, 1).cuda()
                fake = self.netg(latent_i)
                # forward_d
                _, pred_real = self.netd(input)
                _, pred_fake = self.netd(fake)  # .detach() TODO

                # Backward-pass
                wasserstein_d = (pred_fake.mean() - pred_real.mean()) * 1
                wasserstein_d.backward()
                self.optimizer_d.step()

                for p in self.netd.parameters():
                    p.data.clamp_(-0.01, 0.01)  #<<<<<<<

            # train netg
            # for p in self.netd.parameters(): p.requires_grad = False
            self.optimizer_g.zero_grad()
            noise = torch.rand(self.batchsize['train'], 64, 1, 1).cuda()
            fake = self.netg(noise)
            _, pred_fake = self.netd(fake)
            err_g_d = -pred_fake.mean()  # negative

            err_g_d.backward()
            self.optimizer_g.step()

            errors = {
                'loss_netD': wasserstein_d.item(),
                'loss_netG': round(err_g_d.item(), 3),
            }

            mean_wass += wasserstein_d.item()
            tk0.set_postfix(errors)

            if i % 50 == 0:
                img_dir = os.path.join(self.outf, self.opt.experiment_name,
                                       'train', 'images')
                if not os.path.isdir(img_dir):
                    os.makedirs(img_dir)
                self.save_image_cv2(input.data, '%s/reals.png' % img_dir)
                self.save_image_cv2(fake.data,
                                    '%s/fakes%03d.png' % (img_dir, i))

        mean_wass /= len(self.dataloader['train'])
        return mean_wass

    ##
    def test(self):
        """ Test AnoGAN model.

        Args:
            dataloader ([type]): Dataloader for the test set

        Raises:
            IOError: Model weights not found.
        """
        self.netg.eval()
        self.netd.eval()
        # for p in self.netg.parameters(): p.requires_grad = False
        # for p in self.netd.parameters(): p.requires_grad = False

        for img in os.listdir(self.test_img_dir):
            os.remove(os.path.join(self.test_img_dir, img))

        self.phase = 'test'
        meter = Meter_AnoGAN()
        tk1 = tqdm(self.dataloader['test'], total=len(self.dataloader['test']))
        for i, itr in enumerate(tk1):
            input, target = itr
            input = input.cuda()

            latent_i = torch.rand(self.batchsize['test'], 64, 1, 1).cuda()
            latent_i.requires_grad = True

            optimizer_latent = optim.Adam([latent_i], lr=self.lr)
            test_loss = None
            for _ in range(self.test_iter):
                optimizer_latent.zero_grad()
                fake = self.netg(latent_i)
                residual_loss = self.l_con(input, fake)
                latent_o, _ = self.netd(fake)
                discrimination_loss = self.l_enc(latent_i, latent_o)
                alpha = 0.1
                test_loss = (
                    1 - alpha) * residual_loss + alpha * discrimination_loss
                test_loss.backward()
                optimizer_latent.step()

            abnormal_score = test_loss
            meter.update(abnormal_score, target)  #<<<TODO

            # Save test images.
            combine = torch.cat([input.cpu(), fake.cpu()], dim=0)
            self.save_image_cv2(combine,
                                '%s/%05d.jpg' % (self.test_img_dir, i + 1))

        criterion, res_total = meter.get_metrics()

        # rename images
        for i, res in enumerate(res_total):
            os.rename('%s/%05d.jpg' % (self.test_img_dir, i + 1),
                      '%s/%05d_%s.jpg' % (self.test_img_dir, i + 1, res))

        return criterion, res_total

    @staticmethod
    def save_image_cv2(tensor, filename):
        # return
        from torchvision.utils import make_grid
        # tensor = (tensor + 1) / 2
        grid = make_grid(tensor, 8, 2, 0, False, None, False)
        ndarray = grid.mul_(255).clamp_(0, 255).permute(1, 2, 0).to(
            'cpu', torch.uint8).numpy()
        cv2.imwrite(filename, ndarray)
Exemplo n.º 3
0
def train():
    dataset = torchvision.datasets.ImageFolder(conf.data_path,
                                               transform=transforms)
    dataloader = torch.utils.data.DataLoader(dataset=dataset,
                                             batch_size=conf.batch_size,
                                             shuffle=True,
                                             drop_last=True)
    netG = NetG(conf.ngf, conf.nz)
    netD = NetD(conf.ndf)

    criterion = nn.BCELoss()
    optimizerG = torch.optim.Adam(netG.parameters(),
                                  lr=conf.lr,
                                  betas=(conf.beta1, 0.999))
    optimizerD = torch.optim.Adam(netD.parameters(),
                                  lr=conf.lr,
                                  betas=(conf.beta1, 0.999))

    label = torch.FloatTensor(conf.batch_size)
    real_label = 1
    fake_label = 0

    for epoch in range(1, conf.epoch + 1):
        for i, (imgs, _) in enumerate(dataloader):
            #step1:固定G,训练D
            optimizerD.zero_grad()
            output = netD(imgs)  #让D尽可能把真图片识别为1
            label.data.fill_(real_label)
            errD_real = criterion(output, label)
            errD_real.backward()
            #让D尽可能把假图判别为0
            label.data.fill_(fake_label)
            noise = torch.randn(conf.batch_size, conf.nz, 1, 1)
            fake = netG(noise)  #生成假图
            output = netD(fake.detach())  #避免梯度传到G,因为G不用更新
            errD_fake = criterion(output, label)
            errD_fake.backward()
            errD = errD_fake + errD_real
            optimizerD.step()

            #step2:固定判别器D,训练生成器G
            optimizerG.zero_grad()
            label.data.fill_(real_label)  #让D尽可能把G生成的假图判别为1
            output = netD(fake)
            errG = criterion(output, label)
            errG.backward()
            optimizerG.step()

            if i % 4 == 0:
                rate = i * 1.0 / len(dataloader) * 100
                logger.info(
                    "epoch={}, i={}, N={}, rate={}%, errD={}, errG={}".format(
                        epoch, i, len(dataloader), rate, errD, errG))
        #end-for
        save_image(fake.data,
                   '%s/fake_samples_epoch_%03d.png' %
                   (conf.checkpoints, epoch),
                   normalize=True)
        torch.save(netG.state_dict(),
                   '%s/netG_%03d.pth' % (conf.checkpoints, epoch))
        torch.save(netD.state_dict(),
                   '%s/netD_%03d.pth' % (conf.checkpoints, epoch))
Exemplo n.º 4
0
    device = torch.device("cuda" if torch.cuda.is_available() else "cpu")

    netG = NetG(cfg.TRAIN.NF, 100).to(device)
    netD = NetD(cfg.TRAIN.NF).to(device)

    text_encoder = RNN_ENCODER(dataset.n_words, nhidden=cfg.TEXT.EMBEDDING_DIM)
    state_dict = torch.load(cfg.TEXT.DAMSM_NAME, map_location=lambda storage, loc: storage)
    text_encoder.load_state_dict(state_dict)
    text_encoder.cuda()

    for p in text_encoder.parameters():
        p.requires_grad = False
    text_encoder.eval()    

    state_epoch=0

    optimizerG = torch.optim.Adam(netG.parameters(), lr=0.0001, betas=(0.0, 0.9))
    optimizerD = torch.optim.Adam(netD.parameters(), lr=0.0004, betas=(0.0, 0.9))  


    if cfg.B_VALIDATION:
        count = sampling(text_encoder, netG, dataloader,device)  # generate images for the whole valid dataset
        print('state_epoch:  %d'%(state_epoch))
    else:
        
        count = train(dataloader,netG,netD,text_encoder,optimizerG,optimizerD, state_epoch,batch_size,device)



        
Exemplo n.º 5
0
netd = netd.to(device)
neta = neta.to(device)
netg.train()
netd.train()
neta.train()
dataset = CASIABDataset(data_dir='../data/GEI_CASIA_B/gei/')

iteration = 0
lr = 0.0002
real_label = 1
fake_label = 0
fineSize = 64

label = th.zeros((128, 1), requires_grad=False).to(device)
optimG = optim.Adam(netg.parameters(), lr=lr/2)
optimD = optim.Adam(netd.parameters(), lr=lr/3)
optimA = optim.Adam(neta.parameters(), lr=lr/3)
print('Training starts')
while iteration < 1000000:
    ass_label, noass_label, img = dataset.getbatch(128)
    ass_label = ass_label.to(device).to(th.float32)
    noass_label = noass_label.to(device).to(th.float32)
    img = img.to(device).to(th.float32)
    # update D
    lossD = 0
    optimD.zero_grad()
    output = netd(ass_label)
    label.fill_(real_label)
    lossD_real1 = F.binary_cross_entropy(output, label)
    lossD += lossD_real1.item()
    lossD_real1.backward()
Exemplo n.º 6
0
class GANAgent(object):
    def __init__(self,
                 input_size,
                 output_size,
                 num_env,
                 num_step,
                 gamma,
                 lam=0.95,
                 learning_rate=1e-4,
                 ent_coef=0.01,
                 clip_grad_norm=0.5,
                 epoch=3,
                 batch_size=128,
                 ppo_eps=0.1,
                 update_proportion=0.25,
                 use_gae=True,
                 use_cuda=False,
                 use_noisy_net=False,
                 hidden_dim=512):
        self.model = CnnActorCriticNetwork(input_size, output_size,
                                           use_noisy_net)
        self.num_env = num_env
        self.output_size = output_size
        self.input_size = input_size
        self.num_step = num_step
        self.gamma = gamma
        self.lam = lam
        self.epoch = epoch
        self.batch_size = batch_size
        self.use_gae = use_gae
        self.ent_coef = ent_coef
        self.ppo_eps = ppo_eps
        self.clip_grad_norm = clip_grad_norm
        self.update_proportion = update_proportion
        self.device = torch.device('cuda' if use_cuda else 'cpu')

        self.netG = NetG(z_dim=hidden_dim)  #(input_size, z_dim=hidden_dim)
        self.netD = NetD(z_dim=1)
        self.netG.apply(weights_init)
        self.netD.apply(weights_init)

        self.optimizer_policy = optim.Adam(list(self.model.parameters()),
                                           lr=learning_rate)
        self.optimizer_G = optim.Adam(list(self.netG.parameters()),
                                      lr=learning_rate,
                                      betas=(0.5, 0.999))
        self.optimizer_D = optim.Adam(list(self.netD.parameters()),
                                      lr=learning_rate,
                                      betas=(0.5, 0.999))

        self.netG = self.netG.to(self.device)
        self.netD = self.netD.to(self.device)

        self.model = self.model.to(self.device)

    def reconstruct(self, state):
        state = torch.Tensor(state).to(self.device)
        state = state.float()
        reconstructed = self.vae(state.unsqueeze(0))[0].squeeze(0)
        return reconstructed.detach().cpu().numpy()

    def get_action(self, state):
        state = torch.Tensor(state).to(self.device)
        state = state.float()
        policy, value_ext, value_int = self.model(state)
        action_prob = F.softmax(policy, dim=-1).data.cpu().numpy()

        action = self.random_choice_prob_index(action_prob)

        return action, value_ext.data.cpu().numpy().squeeze(
        ), value_int.data.cpu().numpy().squeeze(), policy.detach()

    @staticmethod
    def random_choice_prob_index(p, axis=1):
        r = np.expand_dims(np.random.rand(p.shape[1 - axis]), axis=axis)
        return (p.cumsum(axis=axis) > r).argmax(axis=axis)

    def compute_intrinsic_reward(self, obs):
        obs = torch.FloatTensor(obs).to(self.device)
        #embedding = self.vae.representation(obs)
        #reconstructed_embedding = self.vae.representation(self.vae(obs)[0]) # why use index[0]
        reconstructed_img, embedding, reconstructed_embedding = self.netG(obs)

        intrinsic_reward = (embedding - reconstructed_embedding
                            ).pow(2).sum(1) / 2  # Not use reconstructed loss

        return intrinsic_reward.detach().cpu().numpy()

    def train_model(self, s_batch, target_ext_batch, target_int_batch, y_batch,
                    adv_batch, next_obs_batch, old_policy):
        s_batch = torch.FloatTensor(s_batch).to(self.device)
        target_ext_batch = torch.FloatTensor(target_ext_batch).to(self.device)
        target_int_batch = torch.FloatTensor(target_int_batch).to(self.device)
        y_batch = torch.LongTensor(y_batch).to(self.device)
        adv_batch = torch.FloatTensor(adv_batch).to(self.device)
        next_obs_batch = torch.FloatTensor(next_obs_batch).to(self.device)

        sample_range = np.arange(len(s_batch))
        #reconstruction_loss = nn.MSELoss(reduction='none')]
        l_adv = nn.MSELoss(reduction='none')
        l_con = nn.L1Loss(reduction='none')
        l_enc = nn.MSELoss(reduction='none')
        l_bce = nn.BCELoss(reduction='none')

        with torch.no_grad():
            policy_old_list = torch.stack(old_policy).permute(
                1, 0, 2).contiguous().view(-1,
                                           self.output_size).to(self.device)

            m_old = Categorical(F.softmax(policy_old_list, dim=-1))
            log_prob_old = m_old.log_prob(y_batch)
            # ------------------------------------------------------------

        #recon_losses = np.array([])
        #kld_losses = np.array([])
        mean_err_g_adv_per_batch = np.array([])
        mean_err_g_con_per_batch = np.array([])
        mean_err_g_enc_per_batch = np.array([])
        mean_err_d_per_batch = np.array([])

        for i in range(self.epoch):
            np.random.shuffle(sample_range)
            for j in range(int(len(s_batch) / self.batch_size)):
                sample_idx = sample_range[self.batch_size * j:self.batch_size *
                                          (j + 1)]

                # --------------------------------------------------------------------------------
                # for generative curiosity (GAN loss)
                #gen_next_state, mu, logvar = self.vae(next_obs_batch[sample_idx])
                ############### netG forward ##############################################
                gen_next_state, latent_i, latent_o = self.netG(
                    next_obs_batch[sample_idx])

                ############### netD forward ##############################################
                pred_real, feature_real = self.netD(next_obs_batch[sample_idx])
                pred_fake, feature_fake = self.netD(gen_next_state)

                #d = len(gen_next_state.shape)
                #recon_loss = reconstruction_loss(gen_next_state, next_obs_batch[sample_idx]).mean(axis=list(range(1, d)))
                ############### netG backward #############################################
                self.optimizer_G.zero_grad()

                err_g_adv_per_img = l_adv(
                    self.netD(next_obs_batch[sample_idx])[1],
                    self.netD(gen_next_state)[1]).mean(
                        axis=list(range(1, len(feature_real.shape))))
                err_g_con_per_img = l_con(
                    next_obs_batch[sample_idx], gen_next_state).mean(
                        axis=list(range(1, len(gen_next_state.shape))))
                err_g_enc_per_img = l_enc(latent_i, latent_o).mean(-1)

                #kld_loss = -0.5 * (1 + logvar - mu.pow(2) - logvar.exp()).sum(axis=1)

                # TODO: keep this proportion of experience used for VAE update?
                # Proportion of experience used for VAE update
                img_num = len(err_g_con_per_img)
                mask = torch.rand(img_num).to(self.device)
                mask = (mask < self.update_proportion).type(
                    torch.FloatTensor).to(self.device)
                mean_err_g_adv = (err_g_adv_per_img * mask).sum() / torch.max(
                    mask.sum(),
                    torch.Tensor([1]).to(self.device))
                mean_err_g_con = (err_g_con_per_img * mask).sum() / torch.max(
                    mask.sum(),
                    torch.Tensor([1]).to(self.device))
                mean_err_g_enc = (err_g_enc_per_img * mask).sum() / torch.max(
                    mask.sum(),
                    torch.Tensor([1]).to(self.device))

                # hyperparameter weights:
                w_adv = 1
                w_con = 50
                w_enc = 1

                mean_err_g = mean_err_g_adv * w_adv +\
                        mean_err_g_con * w_con +\
                        mean_err_g_enc * w_enc
                mean_err_g.backward(retain_graph=True)

                self.optimizer_G.step()

                mean_err_g_adv_per_batch = np.append(
                    mean_err_g_adv_per_batch,
                    mean_err_g_adv.detach().cpu().numpy())
                mean_err_g_con_per_batch = np.append(
                    mean_err_g_con_per_batch,
                    mean_err_g_con.detach().cpu().numpy())
                mean_err_g_enc_per_batch = np.append(
                    mean_err_g_enc_per_batch,
                    mean_err_g_enc.detach().cpu().numpy())

                ############## netD backward ##############################################
                self.optimizer_D.zero_grad()

                real_label = torch.ones_like(pred_real).to(self.device)
                fake_label = torch.zeros_like(pred_fake).to(self.device)

                err_d_real_per_img = l_bce(pred_real, real_label)
                err_d_fake_per_img = l_bce(pred_fake, fake_label)
                mean_err_d_real = (err_d_real_per_img *
                                   mask).sum() / torch.max(
                                       mask.sum(),
                                       torch.Tensor([1]).to(self.device))
                mean_err_d_fake = (err_d_fake_per_img *
                                   mask).sum() / torch.max(
                                       mask.sum(),
                                       torch.Tensor([1]).to(self.device))

                mean_err_d = (mean_err_d_real + mean_err_d_fake) / 2
                mean_err_d.backward()
                self.optimizer_D.step()

                mean_err_d_per_batch = np.append(
                    mean_err_d_per_batch,
                    mean_err_d.detach().cpu().numpy())

                if mean_err_d.item() < 1e-5:
                    self.netD.apply(weights_init)
                    print('Reloading net d')
                ############# policy update ###############################################

                policy, value_ext, value_int = self.model(s_batch[sample_idx])
                m = Categorical(F.softmax(policy, dim=-1))
                log_prob = m.log_prob(y_batch[sample_idx])

                ratio = torch.exp(log_prob - log_prob_old[sample_idx])

                surr1 = ratio * adv_batch[sample_idx]
                surr2 = torch.clamp(ratio, 1.0 - self.ppo_eps,
                                    1.0 + self.ppo_eps) * adv_batch[sample_idx]

                actor_loss = -torch.min(surr1, surr2).mean()
                critic_ext_loss = F.mse_loss(value_ext.sum(1),
                                             target_ext_batch[sample_idx])
                critic_int_loss = F.mse_loss(value_int.sum(1),
                                             target_int_batch[sample_idx])

                critic_loss = critic_ext_loss + critic_int_loss

                entropy = m.entropy().mean()

                self.optimizer_policy.zero_grad()
                loss = actor_loss + 0.5 * critic_loss - self.ent_coef * entropy
                loss.backward()
                #global_grad_norm_(list(self.model.parameters())+list(self.vae.parameters())) do we need this step
                #global_grad_norm_(list(self.model.parameter())) or just norm policy
                self.optimizer_poilicy.step()

        return mean_err_g_adv_per_batch, mean_err_g_con_per_batch, mean_err_g_enc_per_batch, mean_err_d_per_batch

    def train_just_vae(self, s_batch, next_obs_batch):
        s_batch = torch.FloatTensor(s_batch).to(self.device)
        next_obs_batch = torch.FloatTensor(next_obs_batch).to(self.device)

        sample_range = np.arange(len(s_batch))

        l_adv = nn.MSELoss(reduction='none')
        l_con = nn.L1Loss(reduction='none')
        l_enc = nn.MSELoss(reduction='none')
        l_bce = nn.BCELoss(reduction='none')

        mean_err_g_adv_per_batch = np.array([])
        mean_err_g_con_per_batch = np.array([])
        mean_err_g_enc_per_batch = np.array([])
        mean_err_d_per_batch = np.array([])

        for i in range(self.epoch):
            np.random.shuffle(sample_range)
            for j in range(int(len(s_batch) / self.batch_size)):
                sample_idx = sample_range[self.batch_size * j:self.batch_size *
                                          (j + 1)]

                ############### netG forward ##############################################
                gen_next_state, latent_i, latent_o = self.netG(
                    next_obs_batch[sample_idx])

                ############### netD forward ##############################################
                pred_real, feature_real = self.netD(next_obs_batch[sample_idx])
                pred_fake, feature_fake = self.netD(gen_next_state)

                #d = len(gen_next_state.shape)
                #recon_loss = reconstruction_loss(gen_next_state, next_obs_batch[sample_idx]).mean(axis=list(range(1, d)))
                ############### netG backward #############################################
                self.optimizer_G.zero_grad()

                err_g_adv_per_img = l_adv(
                    self.netD(next_obs_batch[sample_idx])[1],
                    self.netD(gen_next_state)[1]).mean(
                        axis=list(range(1, len(feature_real.shape))))
                err_g_con_per_img = l_con(
                    next_obs_batch[sample_idx], gen_next_state).mean(
                        axis=list(range(1, len(gen_next_state.shape))))
                err_g_enc_per_img = l_enc(latent_i, latent_o).mean(-1)

                #kld_loss = -0.5 * (1 + logvar - mu.pow(2) - logvar.exp()).sum(axis=1)

                # TODO: keep this proportion of experience used for VAE update?
                # Proportion of experience used for VAE update
                img_num = len(err_g_con_per_img)
                mask = torch.rand(img_num).to(self.device)
                mask = (mask < self.update_proportion).type(
                    torch.FloatTensor).to(self.device)
                mean_err_g_adv = (err_g_adv_per_img * mask).sum() / torch.max(
                    mask.sum(),
                    torch.Tensor([1]).to(self.device))
                mean_err_g_con = (err_g_con_per_img * mask).sum() / torch.max(
                    mask.sum(),
                    torch.Tensor([1]).to(self.device))
                mean_err_g_enc = (err_g_enc_per_img * mask).sum() / torch.max(
                    mask.sum(),
                    torch.Tensor([1]).to(self.device))

                # hyperparameter weights:
                w_adv = 1
                w_con = 50
                w_enc = 1

                mean_err_g = mean_err_g_adv * w_adv +\
                        mean_err_g_con * w_con +\
                        mean_err_g_enc * w_enc
                mean_err_g.backward(retain_graph=True)

                self.optimizer_G.step()

                mean_err_g_adv_per_batch = np.append(
                    mean_err_g_adv_per_batch,
                    mean_err_g_adv.detach().cpu().numpy())
                mean_err_g_con_per_batch = np.append(
                    mean_err_g_con_per_batch,
                    mean_err_g_con.detach().cpu().numpy())
                mean_err_g_enc_per_batch = np.append(
                    mean_err_g_enc_per_batch,
                    mean_err_g_enc.detach().cpu().numpy())

                ############## netD backward ##############################################
                self.optimizer_D.zero_grad()

                real_label = torch.ones_like(pred_real).to(self.device)
                fake_label = torch.zeros_like(pred_fake).to(self.device)

                err_d_real_per_img = l_bce(pred_real, real_label)
                err_d_fake_per_img = l_bce(pred_fake, fake_label)
                mean_err_d_real = (err_d_real_per_img *
                                   mask).sum() / torch.max(
                                       mask.sum(),
                                       torch.Tensor([1]).to(self.device))
                mean_err_d_fake = (err_d_fake_per_img *
                                   mask).sum() / torch.max(
                                       mask.sum(),
                                       torch.Tensor([1]).to(self.device))

                mean_err_d = (mean_err_d_real + mean_err_d_fake) / 2
                mean_err_d.backward()
                self.optimizer_D.step()

                mean_err_d_per_batch = np.append(
                    mean_err_d_per_batch,
                    mean_err_d.detach().cpu().numpy())

        return mean_err_g_adv_per_batch, mean_err_g_con_per_batch, mean_err_g_enc_per_batch, mean_err_d_per_batch
Exemplo n.º 7
0
def train():
    # change opt
    # for k_, v_ in kwargs.items():
    #     setattr(opt, k_, v_)

    device = torch.device('cuda') if torch.cuda.is_available else torch.device(
        'cpu')

    if opt.vis:
        from visualizer import Visualizer
        vis = Visualizer(opt.env)

    # rescale to -1~1
    transform = transforms.Compose([
        transforms.Resize(opt.image_size),
        transforms.CenterCrop(opt.image_size),
        transforms.ToTensor(),
        transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
    ])
    dataset = datasets.ImageFolder(opt.data_path, transform=transform)

    dataloader = DataLoader(dataset,
                            batch_size=opt.batch_size,
                            shuffle=True,
                            num_workers=opt.num_workers,
                            drop_last=True)

    netd = NetD(opt)
    netg = NetG(opt)
    map_location = lambda storage, loc: storage
    if opt.netd_path:
        netd.load_state_dict(torch.load(opt.netd_path),
                             map_location=map_location)
    if opt.netg_path:
        netg.load_state_dict(torch.load(opt.netg_path),
                             map_location=map_location)

    if torch.cuda.is_available():
        netd.to(device)
        netg.to(device)

    # 定义优化器和损失
    optimizer_g = torch.optim.Adam(netg.parameters(),
                                   opt.lr1,
                                   betas=(opt.beta1, 0.999))
    optimizer_d = torch.optim.Adam(netd.parameters(),
                                   opt.lr2,
                                   betas=(opt.beta1, 0.999))

    criterion = torch.nn.BCELoss().to(device)

    # 真label为1, noises是输入噪声
    true_labels = Variable(torch.ones(opt.batch_size))
    fake_labels = Variable(torch.zeros(opt.batch_size))

    fix_noises = Variable(torch.randn(opt.batch_size, opt.nz, 1, 1))
    noises = Variable(torch.randn(opt.batch_size, opt.nz, 1, 1))

    errord_meter = AverageValueMeter()
    errorg_meter = AverageValueMeter()

    if torch.cuda.is_available():
        netd.cuda()
        netg.cuda()
        criterion.cuda()
        true_labels, fake_labels = true_labels.cuda(), fake_labels.cuda()
        fix_noises, noises = fix_noises.cuda(), noises.cuda()

    for epoch in range(opt.max_epoch):
        print("epoch:", epoch, end='\r')
        # sys.stdout.flush()
        for ii, (img, _) in enumerate(dataloader):
            real_img = Variable(img)
            if torch.cuda.is_available():
                real_img = real_img.cuda()

            # 训练判别器, real -> 1, fake -> 0
            if (ii + 1) % opt.d_every == 0:
                # real
                optimizer_d.zero_grad()
                output = netd(real_img)
                # print(output.shape, true_labels.shape)
                error_d_real = criterion(output, true_labels)
                error_d_real.backward()
                # fake
                noises.data.copy_(torch.randn(opt.batch_size, opt.nz, 1, 1))
                fake_img = netg(noises).detach()  # 随机噪声生成假图
                fake_output = netd(fake_img)
                error_d_fake = criterion(fake_output, fake_labels)
                error_d_fake.backward()
                # update optimizer
                optimizer_d.step()

                error_d = error_d_fake + error_d_real

                errord_meter.add(error_d.item())

            # 训练生成器, 让生成器得到的图片能够被判别器判别为真
            if (ii + 1) % opt.g_every == 0:
                optimizer_g.zero_grad()
                noises.data.copy_(torch.randn(opt.batch_size, opt.nz, 1, 1))
                fake_img = netg(noises)
                fake_output = netd(fake_img)
                error_g = criterion(fake_output, true_labels)
                error_g.backward()
                optimizer_g.step()

                errorg_meter.add(error_g.item())

            if opt.vis and ii % opt.plot_every == opt.plot_every - 1:
                # 进行可视化
                # if os.path.exists(opt.debug_file):
                #     import ipdb
                #     ipdb.set_trace()

                fix_fake_img = netg(fix_noises)
                vis.images(
                    fix_fake_img.detach().cpu().numpy()[:opt.batch_size] * 0.5
                    + 0.5,
                    win='fixfake')
                vis.images(real_img.data.cpu().numpy()[:opt.batch_size] * 0.5 +
                           0.5,
                           win='real')
                vis.plot('errord', errord_meter.value()[0])
                vis.plot('errorg', errorg_meter.value()[0])

        if (epoch + 1) % opt.save_every == 0:
            # 保存模型、图片
            tv.utils.save_image(fix_fake_img.data[:opt.batch_size],
                                '%s/%s.png' % (opt.save_path, epoch),
                                normalize=True,
                                range=(-1, 1))
            torch.save(netd.state_dict(), 'checkpoints/netd_%s.pth' % epoch)
            torch.save(netg.state_dict(), 'checkpoints/netg_%s.pth' % epoch)
            errord_meter.reset()
            errorg_meter.reset()
Exemplo n.º 8
0
dataset = torchvision.datasets.ImageFolder(opt.data_path, transform=transforms)

dataloader = torch.utils.data.DataLoader(
    dataset=dataset,
    batch_size=opt.batchSize,
    shuffle=True,
    drop_last=True,
)

netG = NetG(opt.ngf, opt.nz).to(device)
netD = NetD(opt.ndf).to(device)

criterion = nn.BCELoss()
optimizerG = torch.optim.Adam(netG.parameters(), lr=opt.lr, betas=(opt.beta1, 0.999))
optimizerD = torch.optim.Adam(netD.parameters(), lr=opt.lr, betas=(opt.beta1, 0.999))

label = torch.FloatTensor(opt.batchSize)
real_label = 1
fake_label = 0

if not os.path.exists(opt.outf):
    os.makedirs(opt.outf)
if not os.path.exists(opt.model_path):
    os.makedirs(opt.model_path)

for epoch in range(1, opt.epoch + 1):
    for i, (imgs,_) in enumerate(dataloader):
        optimizerD.zero_grad()
        imgs=imgs.to(device)
        output = netD(imgs)
Exemplo n.º 9
0
realData = torch.FloatTensor(batchSize, 3, imgSize, imgSize)
one = torch.FloatTensor([1])
mone = one * -1

realData = Variable(realData)
z = Variable(z)

netG = netG.cuda()
netD = netD.cuda()
z = z.cuda()
realData = realData.cuda()
one = one.cuda()
mone = mone.cuda()

# setup optimizer
optimizerD = optim.RMSprop(netD.parameters(), lr=0.00005)  # 0.00005
optimizerG = optim.RMSprop(netG.parameters(), lr=0.00005)
if opt.ep != -1:
    netD.load_state_dict(
        torch.load(checkRoot + '/netD_epoch_' + str(opt.ep) + '.pth'))
    netG.load_state_dict(
        torch.load(checkRoot + '/netG_epoch_' + str(opt.ep) + '.pth'))
# train
ig = 0
for it in np.arange(iterNum) + opt.ep + 1:
    dataIter = iter(dataLoader)
    ib = 0
    while ib < len(dataLoader):
        ############################
        # (1) Update D network
        ###########################
Exemplo n.º 10
0
    netd = NetD(opt)

    # 加载已有的网络参数
    if opt.netd_path:
        print('Loading netd...', end='')
        netd.load_state_dict(torch.load(opt.netd_path))
        print('Successful!')
    if opt.netg_path:
        print('Loading netg...', end='')
        netg.load_state_dict(torch.load(opt.netg_path))
        print('Successful!')

    optimizer_g = torch.optim.Adam(netg.parameters(),
                                   opt.lr_netg,
                                   betas=(opt.beta1, 0.999))
    optimizer_d = torch.optim.Adam(netd.parameters(),
                                   opt.lr_netd,
                                   betas=(opt.beta1, 0.999))

    criterion = torch.nn.BCELoss()

    # 真图片 label 为 1,假图片为 0
    true_labels = Variable(torch.ones(opt.batch_size))
    fake_labels = Variable(torch.zeros(opt.batch_size))

    #fix_noises = Variable(torch.randn(opt.batch_size, opt.nz, 1, 1))
    noises = Variable(torch.randn(opt.batch_size, opt.nz, 1, 1))

    if opt.gpu:
        netg.cuda()
        netd.cuda()
Exemplo n.º 11
0
netD.apply(weights_init)  # 生成器网络w初始化 Discriminator weights initialization
# 打印网络模型 Print the model
print(netG)
print(netD)

criterion = nn.BCELoss()  # 初始化损失函数 Initialize BCELoss function

# Create batch of latent vectors that we will use to visualize the progression of the generator
fixed_noise = torch.randn(100, nz, 1, 1, device=device)

# 评估真假的标签 真为1 假为0 Establish convention for real and fake labels during training
real_label = 1
fake_label = 0

# Adam优化 Setup Adam optimizers for both G and D
optimizerD = optim.Adam(netD.parameters(), lr=lr, betas=(beta1, 0.999))
optimizerG = optim.Adam(netG.parameters(), lr=lr, betas=(beta1, 0.999))

# 记录训练过程 Lists to keep track of progress
G_losses = []
D_losses = []
iters = 0

print("开始训练...")
# 对每一个epoch For each epoch
for epoch in range(num_epochs):
    # 对于每一个batch For each batch in the dataloader
    for i, data in enumerate(dataloader, 0):
        ############################
        # (1) Update D network: maximize log(D(x)) + log(1 - D(G(z)))
        ###########################
Exemplo n.º 12
0
class TACGAN():

    def __init__(self, args):
        self.lr = args.lr
        self.cuda = args.use_cuda
        self.batch_size = args.batch_size
        self.image_size = args.image_size
        self.epochs = args.epochs
        self.data_root = args.data_root
        self.dataset = args.dataset
        self.save_dir = args.save_dir
        self.save_prefix = args.save_prefix
        self.continue_training = args.continue_training
        self.continue_epoch = args.continue_epoch
        self.netG_path = args.netg_path
        self.netD_path = args.netd_path
        self.save_after = args.save_after
        self.trainset_loader = None
        self.evalset_loader = None  
        self.num_workers = args.num_workers
        self.docvec_size = args.docvec_size
        self.n_z = args.n_z # length of the noise vector
        self.nl_d = args.nl_d
        self.nl_g = args.nl_g
        self.nf_g = args.nf_g
        self.nf_d = args.nf_d
        self.bce_loss = nn.BCELoss()
        self.nll_loss = nn.NLLLoss()
        self.mse_loss = nn.MSELoss()
        self.class_filename = args.class_filename
        class_path = os.path.join(self.data_root, self.dataset, self.class_filename)
        with open(class_path) as f:
            self.num_classes = len([l for l in f])
        print(self.num_classes)
        self.netD = NetD(n_cls=self.num_classes, n_t=self.nl_d, n_f=self.nf_d, docvec_size=self.docvec_size)
        self.netG = NetG(n_z=self.n_z, n_l=self.nl_g, n_c=self.nf_g, n_t=self.docvec_size)

        if self.continue_training:
            self.loadCheckpoints()

        # convert to cuda tensors
        if self.cuda and torch.cuda.is_available():
            print('CUDA is enabled')
            self.netD = nn.DataParallel(self.netD).cuda()
            self.netG = nn.DataParallel(self.netG).cuda()
            self.bce_loss = self.bce_loss.cuda()
            self.nll_loss = self.nll_loss.cuda()
            self.mse_loss = self.mse_loss.cuda()

        # optimizers for netD and netG
        self.optimizerD = optim.Adam(params=self.netD.parameters(), lr=self.lr, betas=(0.5, 0.999))
        self.optimizerG = optim.Adam(params=self.netG.parameters(), lr=self.lr, betas=(0.5, 0.999))

        # create dir for saving checkpoints and other results if do not exist
        if not os.path.exists(self.save_dir):
            os.makedirs(self.save_dir)
        if not os.path.exists(os.path.join(self.save_dir,'netd_checkpoints')):
            os.makedirs(os.path.join(self.save_dir,'netd_checkpoints'))
        if not os.path.exists(os.path.join(self.save_dir,'netg_checkpoints')):            
            os.makedirs(os.path.join(self.save_dir,'netg_checkpoints')) 
        if not os.path.exists(os.path.join(self.save_dir,'generated_images')):            
            os.makedirs(os.path.join(self.save_dir,'generated_images'))

    # start training process
    def train(self):
        # write to the log file and print it
        log_msg = '********************************************\n'
        log_msg += '            Training Parameters\n'
        log_msg += 'Dataset:%s\nImage size:%dx%d\n'%(self.dataset, self.image_size, self.image_size)
        log_msg += 'Batch size:%d\n'%(self.batch_size)
        log_msg += 'Number of epochs:%d\nlr:%f\n'%(self.epochs,self.lr)
        log_msg += 'nz:%d\nnl-d:%d\nnl-g:%d\n'%(self.n_z, self.nl_d, self.nl_g)
        log_msg += 'nf-g:%d\nnf-d:%d\n'%(self.nf_g, self.nf_d)  
        log_msg += '********************************************\n\n'
        print(log_msg)
        with open(os.path.join(self.save_dir, 'training_log.txt'),'a') as log_file:
            log_file.write(log_msg)
        # load trainset and evalset
        imtext_ds = ImTextDataset(data_dir=self.data_root, dataset=self.dataset, train=True, image_size=self.image_size)
        self.trainset_loader = DataLoader(dataset=imtext_ds, batch_size=self.batch_size, shuffle=True, num_workers=self.num_workers)
        print("Dataset loaded successfuly")
        # load checkpoints for continuing training

        # repeat for the number of epochs
        netd_losses = []
        netg_losses = []
        for epoch in range(self.epochs):
            netd_loss, netg_loss = self.trainEpoch(epoch)
            netd_losses.append(netd_loss)
            netg_losses.append(netg_loss)
            self.saveGraph(netd_losses,netg_losses)
            #self.evalEpoch(epoch)
            self.saveCheckpoints(epoch)

    # train epoch
    def trainEpoch(self, epoch):
        self.netD.train() # set to train mode
        self.netG.train() #! set to train mode???
    
        netd_loss_sum = 0
        netg_loss_sum = 0
        start_time = time()
        for i, (images, labels, captions) in enumerate(self.trainset_loader):
            batch_size = images.size(0) # !batch size my be different (from self.batch_size) for the last batch
            images, labels, captions = Variable(images), Variable(labels), Variable(captions) # !labels should be LongTensor
            labels = labels.type(torch.FloatTensor) # convert to FloatTensor (from DoubleTensor)
            lbl_real = Variable(torch.ones(batch_size, 1))
            lbl_fake = Variable(torch.zeros(batch_size, 1))
            noise = Variable(torch.randn(batch_size, self.n_z)) # create random noise
            noise.data.normal_(0,1) # normalize the noise
            rnd_perm1 = torch.randperm(batch_size) # random permutations for different sets of training tuples
            rnd_perm2 = torch.randperm(batch_size)
            rnd_perm3 = torch.randperm(batch_size)
            rnd_perm4 = torch.randperm(batch_size)
            if self.cuda:
                images, labels, captions = images.cuda(), labels.cuda(), captions.cuda()
                lbl_real, lbl_fake = lbl_real.cuda(), lbl_fake.cuda()
                noise = noise.cuda()
                rnd_perm1, rnd_perm2, rnd_perm3, rnd_perm4 = rnd_perm1.cuda(), rnd_perm2.cuda(), rnd_perm3.cuda(), rnd_perm4.cuda()
            
            ############### Update NetD ###############
            self.netD.zero_grad()       
            # train with wrong image, wrong label, real caption
            outD_wrong, outC_wrong = self.netD(images[rnd_perm1], captions[rnd_perm2])
            # lossD_wrong = self.bce_loss(outD_wrong, lbl_fake)
            lossD_wrong = self.bce_loss(outD_wrong, lbl_fake) + self.mse_loss(outD_wrong, lbl_fake)
            lossC_wrong = self.bce_loss(outC_wrong, labels[rnd_perm1])

            # train with real image, real label, real caption
            outD_real, outC_real = self.netD(images, captions)
            #lossD_real = self.bce_loss(outD_real, lbl_real)
            lossD_real = self.bce_loss(outD_real, lbl_real) + self.mse_loss(outD_real, lbl_real)
            lossC_real = self.bce_loss(outC_real, labels)

            # train with fake image, real label, real caption
            fake = self.netG(noise, captions)
            outD_fake, outC_fake = self.netD(fake.detach(), captions[rnd_perm3])
            #lossD_fake = self.bce_loss(outD_fake, lbl_fake)
            lossD_fake = self.bce_loss(outD_fake, lbl_fake) + self.mse_loss(outD_fake, lbl_fake)
            lossC_fake = self.bce_loss(outC_fake, labels[rnd_perm3])
            
            # backward and forwad for NetD
            netD_loss = lossC_wrong+lossC_real+lossC_fake + lossD_wrong+lossD_real+lossD_fake
            netD_loss.backward()
            self.optimizerD.step()      

            ########## Update NetG ##########
            # train with fake data
            self.netG.zero_grad()
            noise.data.normal_(0,1) # normalize the noise vector
            fake = self.netG(noise, captions[rnd_perm4])
            d_fake, c_fake = self.netD(fake, captions[rnd_perm4])
            #lossD_fake_G = self.bce_loss(d_fake, lbl_real)
            lossD_fake_G = self.mse_loss(d_fake, lbl_real)
            lossC_fake_G = self.bce_loss(c_fake, labels[rnd_perm4])
            netG_loss = lossD_fake_G + lossC_fake_G 
            netG_loss.backward()    
            self.optimizerG.step()
            
            netd_loss_sum += netD_loss.item()
            netg_loss_sum += netG_loss.item()
            ### print progress info ###
            print('Epoch %d/%d, %.2f%% completed. Loss_NetD: %.4f, Loss_NetG: %.4f'
                  %(epoch, self.epochs,(float(i)/len(self.trainset_loader))*100, netD_loss.item(), netG_loss.item()))

        end_time = time()
        netd_avg_loss = netd_loss_sum / len(self.trainset_loader)
        netg_avg_loss = netg_loss_sum / len(self.trainset_loader)
        epoch_time = (end_time-start_time)/60
        log_msg = '-------------------------------------------\n'
        log_msg += 'Epoch %d took %.2f minutes\n'%(epoch, epoch_time)
        log_msg += 'NetD average loss: %.4f, NetG average loss: %.4f\n\n' %(netd_avg_loss, netg_avg_loss)
        print(log_msg)
        with open(os.path.join(self.save_dir, 'training_log.txt'),'a') as log_file:
            log_file.write(log_msg)
        return netd_avg_loss, netg_avg_loss

    # eval epoch                   
    def evalEpoch(self, epoch):
        #self.netD.eval()
        #self.netG.eval()
        return 0
    
    # draws and saves the loss graph upto the current epoch
    def saveGraph(self, netd_losses, netg_losses):
        plt.plot(netd_losses, color='red', label='NetD Loss')
        plt.plot(netg_losses, color='blue', label='NetG Loss')
        plt.xlabel('epoch')
        plt.ylabel('error')
        plt.legend(loc='best')
        plt.savefig(os.path.join(self.save_dir,'loss_graph.png'))
        plt.close()

    # save after each epoch
    def saveCheckpoints(self, epoch):
        if epoch%self.save_after==0:
            name_netD = "netd_checkpoints/netD_" + self.save_prefix + "_epoch_" + str(epoch) + ".pth"
            name_netG = "netg_checkpoints/netG_" + self.save_prefix + "_epoch_" + str(epoch) + ".pth"
            torch.save(self.netD.module.state_dict(), os.path.join(self.save_dir, name_netD))
            torch.save(self.netG.module.state_dict(), os.path.join(self.save_dir, name_netG))
            print("Checkpoints for epoch %d saved successfuly" %(epoch))

    # SAVE: data parallel model => add .module
    # LOAD: create model and load checkpoints(not add .module) and wrap nn.DataParallel
    # this is for fitting prefix

    # load checkpoints to continue training
    def loadCheckpoints(self):
        name_netD = "netd_checkpoints/netD_" + self.save_prefix + "_epoch_" + str(self.continue_epoch) + ".pth"
        name_netG = "netg_checkpoints/netG_" + self.save_prefix + "_epoch_" + str(self.continue_epoch) + ".pth"
        self.netG.load_state_dict(torch.load(os.path.join(self.save_dir, name_netG)))
        self.netD.load_state_dict(torch.load(os.path.join(self.save_dir, name_netD)))
        print("Checkpoints loaded successfuly")
Exemplo n.º 13
0
def train_network():

    init_epoch = 0
    best_f1 = 0
    total_steps = 0
    train_dir = ct.TRAIN_TXT
    val_dir = ct.VAL_TXT
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    torch.backends.cudnn.benchmark = True

    train_data = OSCD_TRAIN(train_dir)
    train_dataloader = DataLoader(train_data,
                                  batch_size=ct.BATCH_SIZE,
                                  shuffle=True)
    val_data = OSCD_TEST(val_dir)
    val_dataloader = DataLoader(val_data, batch_size=1, shuffle=False)
    netg = NetG(ct.ISIZE, ct.NC * 2, ct.NZ, ct.NDF,
                ct.EXTRALAYERS).to(device=device)
    netd = NetD(ct.ISIZE, ct.GT_C, 1, ct.NGF, ct.EXTRALAYERS).to(device=device)
    netg.apply(weights_init)
    netd.apply(weights_init)
    if ct.RESUME:
        assert os.path.exists(os.path.join(ct.WEIGHTS_SAVE_DIR, 'current_netG.pth')) \
                and os.path.exists(os.path.join(ct.WEIGHTS_SAVE_DIR, 'current_netG.pth')), \
                'There is not found any saved weights'
        print("\nLoading pre-trained networks.")
        init_epoch = torch.load(
            os.path.join(ct.WEIGHTS_SAVE_DIR, 'current_netG.pth'))['epoch']
        netg.load_state_dict(
            torch.load(os.path.join(ct.WEIGHTS_SAVE_DIR,
                                    'current_netG.pth'))['model_state_dict'])
        netd.load_state_dict(
            torch.load(os.path.join(ct.WEIGHTS_SAVE_DIR,
                                    'current_netD.pth'))['model_state_dict'])
        with open(os.path.join(ct.OUTPUTS_DIR, 'f1_score.txt')) as f:
            lines = f.readlines()
            best_f1 = float(lines[-2].strip().split(':')[-1])
        print("\tDone.\n")

    l_adv = l2_loss
    l_con = nn.L1Loss()
    l_enc = l2_loss
    l_bce = nn.BCELoss()
    l_cos = cos_loss
    dice = DiceLoss()
    optimizer_d = optim.Adam(netd.parameters(), lr=ct.LR, betas=(0.5, 0.999))
    optimizer_g = optim.Adam(netg.parameters(), lr=ct.LR, betas=(0.5, 0.999))

    start_time = time.time()
    for epoch in range(init_epoch + 1, ct.EPOCH):
        loss_g = []
        loss_d = []
        netg.train()
        netd.train()
        epoch_iter = 0
        for i, data in enumerate(train_dataloader):
            INPUT_SIZE = [ct.ISIZE, ct.ISIZE]
            x1, x2, gt = data
            x1 = x1.to(device, dtype=torch.float)
            x2 = x2.to(device, dtype=torch.float)
            gt = gt.to(device, dtype=torch.float)
            gt = gt[:, 0, :, :].unsqueeze(1)
            x = torch.cat((x1, x2), 1)

            epoch_iter += ct.BATCH_SIZE
            total_steps += ct.BATCH_SIZE
            real_label = torch.ones(size=(x1.shape[0], ),
                                    dtype=torch.float32,
                                    device=device)
            fake_label = torch.zeros(size=(x1.shape[0], ),
                                     dtype=torch.float32,
                                     device=device)

            #forward

            fake = netg(x)
            pred_real = netd(gt)
            pred_fake = netd(fake).detach()
            err_d_fake = l_bce(pred_fake, fake_label)
            err_g = l_con(fake, gt)
            err_g_total = ct.G_WEIGHT * err_g + ct.D_WEIGHT * err_d_fake

            pred_fake_ = netd(fake.detach())
            err_d_real = l_bce(pred_real, real_label)
            err_d_fake_ = l_bce(pred_fake_, fake_label)
            err_d_total = (err_d_real + err_d_fake_) * 0.5

            #backward
            optimizer_g.zero_grad()
            err_g_total.backward(retain_graph=True)
            optimizer_g.step()
            optimizer_d.zero_grad()
            err_d_total.backward()
            optimizer_d.step()

            errors = utils.get_errors(err_d_total, err_g_total)
            loss_g.append(err_g_total.item())
            loss_d.append(err_d_total.item())

            counter_ratio = float(epoch_iter) / len(train_dataloader.dataset)
            if (i % ct.DISPOLAY_STEP == 0 and i > 0):
                print(
                    'epoch:', epoch, 'iteration:', i,
                    ' G|D loss is {}|{}'.format(np.mean(loss_g[-51:]),
                                                np.mean(loss_d[-51:])))
                if ct.DISPLAY:
                    utils.plot_current_errors(epoch, counter_ratio, errors,
                                              vis)
                    utils.display_current_images(gt.data, fake.data, vis)
        utils.save_current_images(epoch, gt.data, fake.data, ct.IM_SAVE_DIR,
                                  'training_output_images')

        with open(os.path.join(ct.OUTPUTS_DIR, 'train_loss.txt'), 'a') as f:
            f.write(
                'after %s epoch, loss is %g,loss1 is %g,loss2 is %g,loss3 is %g'
                % (epoch, np.mean(loss_g), np.mean(loss_d), np.mean(loss_g),
                   np.mean(loss_d)))
            f.write('\n')
        if not os.path.exists(ct.WEIGHTS_SAVE_DIR):
            os.makedirs(ct.WEIGHTS_SAVE_DIR)
        utils.save_weights(epoch, netg, optimizer_g, ct.WEIGHTS_SAVE_DIR,
                           'netG')
        utils.save_weights(epoch, netd, optimizer_d, ct.WEIGHTS_SAVE_DIR,
                           'netD')
        duration = time.time() - start_time
        print('training duration is %g' % duration)

        #val phase
        print('Validating.................')
        pretrained_dict = torch.load(
            os.path.join(ct.WEIGHTS_SAVE_DIR,
                         'current_netG.pth'))['model_state_dict']
        device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
        net = NetG(ct.ISIZE, ct.NC * 2, ct.NZ, ct.NDF,
                   ct.EXTRALAYERS).to(device=device)
        net.load_state_dict(pretrained_dict, False)
        with net.eval() and torch.no_grad():
            TP = 0
            FN = 0
            FP = 0
            TN = 0
            for k, data in enumerate(val_dataloader):
                x1, x2, label = data
                x1 = x1.to(device, dtype=torch.float)
                x2 = x2.to(device, dtype=torch.float)
                label = label.to(device, dtype=torch.float)
                label = label[:, 0, :, :].unsqueeze(1)
                x = torch.cat((x1, x2), 1)
                time_i = time.time()
                v_fake = net(x)

                tp, fp, tn, fn = eva.f1(v_fake, label)
                TP += tp
                FN += fn
                TN += tn
                FP += fp

            precision = TP / (TP + FP + 1e-8)
            oa = (TP + TN) / (TP + FN + TN + FP + 1e-8)
            recall = TP / (TP + FN + 1e-8)
            f1 = 2 * precision * recall / (precision + recall + 1e-8)
            if not os.path.exists(ct.BEST_WEIGHT_SAVE_DIR):
                os.makedirs(ct.BEST_WEIGHT_SAVE_DIR)
            if f1 > best_f1:
                best_f1 = f1
                shutil.copy(
                    os.path.join(ct.WEIGHTS_SAVE_DIR, 'current_netG.pth'),
                    os.path.join(ct.BEST_WEIGHT_SAVE_DIR, 'netG.pth'))
            print('current F1: {}'.format(f1))
            print('best f1: {}'.format(best_f1))
            with open(os.path.join(ct.OUTPUTS_DIR, 'f1_score.txt'), 'a') as f:
                f.write('current epoch:{},current f1:{},best f1:{}'.format(
                    epoch, f1, best_f1))
                f.write('\n')