Exemplo n.º 1
0
    def __init__(
        self,
        input_size,
        action_size,
        num_env,
        num_step,
        gamma,
        lam=0.95,
        learning_rate=1e-4,
        ent_coef=0.01,
        clip_grad_norm=0.5,
        epoch=3,
        batch_size=128,
        ppo_eps=0.1,
        update_proportion=0.25,
        use_gae=True,
        use_cuda=False,
        use_noisy_net=False,
        device=None,
    ):
        self.model = CnnActorCriticNetwork(input_size, action_size,
                                           use_noisy_net)
        self.num_env = num_env
        self.action_size = action_size
        self.input_size = input_size
        self.num_step = num_step
        self.gamma = gamma
        self.lam = lam
        self.epoch = epoch
        self.batch_size = batch_size
        self.use_gae = use_gae
        self.ent_coef = ent_coef
        self.ppo_eps = ppo_eps
        self.clip_grad_norm = clip_grad_norm
        self.update_proportion = update_proportion
        self.device = device if device is not None else torch.device(
            'cuda' if use_cuda else 'cpu')

        self.rnd = RNDModel(input_size, action_size)
        self.optimizer = optim.Adam(list(self.model.parameters()) +
                                    list(self.rnd.predictor.parameters()),
                                    lr=learning_rate)
        self.rnd = self.rnd.to(self.device)

        self.model = self.model.to(self.device)

        # varianse matrix
        self.action_std_eye = torch.eye(self.action_size).to(self.device)
        self.action_std_eye.requires_grad = False
Exemplo n.º 2
0
    def __init__(self,
                 input_size,
                 output_size,
                 num_env,
                 num_step,
                 gamma,
                 lam=0.95,
                 learning_rate=1e-4,
                 ent_coef=0.01,
                 clip_grad_norm=0.5,
                 epoch=3,
                 batch_size=128,
                 ppo_eps=0.1,
                 update_proportion=0.25,
                 use_gae=True,
                 use_cuda=False):

        # Build the PPO Model
        self.model = PPOModel(input_size, output_size)

        self.num_env = num_env
        self.output_size = output_size
        self.input_size = input_size
        self.num_step = num_step
        self.gamma = gamma
        self.lam = lam
        self.epoch = epoch
        self.batch_size = batch_size
        self.use_gae = use_gae
        self.ent_coef = ent_coef
        self.ppo_eps = ppo_eps
        self.clip_grad_norm = clip_grad_norm
        self.update_proportion = update_proportion

        self.device = torch.device('cuda' if use_cuda else 'cpu')
        print("DEVICE: ", self.device)

        # Build the RND model
        self.rnd = RNDModel(input_size, output_size)

        # Define the optimizer (Adam)
        self.optimizer = optim.Adam(list(self.model.parameters()) +
                                    list(self.rnd.predictor.parameters()),
                                    lr=learning_rate)

        # CPU/GPU
        self.rnd = self.rnd.to(self.device)

        self.model = self.model.to(self.device)
Exemplo n.º 3
0
    def __init__(
        self,
        nov_rnd,
        input_size,
        output_size,
        use_cuda=False,
        rel_nov_percentile=95,
        freq_percentile=50,
    ):
        self.input_size = input_size
        self.output_size = output_size
        self.device = torch.device('cuda' if use_cuda else 'cpu')

        self.n_l = 7
        self.thresh_lr = 0.1

        self.rel_nov_percentile = rel_nov_percentile
        self.rel_nov_thresh = 10  #100
        self.nov_rnd = RNDAgent(nov_rnd, use_cuda=use_cuda)

        self.freq_percentile = freq_percentile
        self.freq_thresh = 0
        self.freq_rnd = RNDAgent(RNDModel(input_size, output_size),
                                 use_cuda=use_cuda)

        self.rel_nov_state_buf = deque(maxlen=100)
Exemplo n.º 4
0
def main():
    args = get_args()
    device = torch.device('cuda' if args.cuda else 'cpu')
    seed = np.random.randint(0, 100)

    env = ObstacleTowerEnv('../ObstacleTower/obstacletower', worker_id=seed,
                               retro=True, config={'total-floors': 12}, greyscale=True, timeout_wait=300)
    env._flattener = ActionFlattener([2, 3, 2, 1])
    env._action_space = env._flattener.action_space
    input_size = env.observation_space.shape  # 4
    output_size = env.action_space.n  # 2

    env.close()

    is_render = False
    if not os.path.exists(args.save_dir):
        os.makedirs(args.save_dir)
    model_path = os.path.join(args.save_dir, 'main.model')
    predictor_path = os.path.join(args.save_dir, 'main.pred')
    target_path = os.path.join(args.save_dir, 'main.target')

    writer = SummaryWriter()#log_dir=args.log_dir)



    discounted_reward = RewardForwardFilter(args.ext_gamma)

    model = CnnActorCriticNetwork(input_size, output_size, args.use_noisy_net)
    rnd = RNDModel(input_size, output_size)
    model = model.to(device)
    rnd = rnd.to(device)
    optimizer = optim.Adam(list(model.parameters()) + list(rnd.predictor.parameters()), lr=args.lr)
   
    if args.load_model:
        "Loading model..."
        if args.cuda:
            model.load_state_dict(torch.load(model_path))
        else:
            model.load_state_dict(torch.load(model_path, map_location='cpu'))


    works = []
    parent_conns = []
    child_conns = []
    for idx in range(args.num_worker):
        parent_conn, child_conn = Pipe()
        work = AtariEnvironment(
            args.env_name,
            is_render,
            idx,
            child_conn,
            sticky_action=args.sticky_action,
            p=args.sticky_action_prob,
            max_episode_steps=args.max_episode_steps)
        work.start()
        works.append(work)
        parent_conns.append(parent_conn)
        child_conns.append(child_conn)

    states = np.zeros([args.num_worker, 4, 84, 84])

    sample_env_index = 0   # Sample Environment index to log
    sample_episode = 0
    sample_rall = 0
    sample_step = 0
    sample_i_rall = 0
    global_update = 0
    global_step = 0

    print("Load RMS =", args.load_rms)
    if args.load_rms:
        print("Loading RMS values for observation and reward normalization")
        with open('reward_rms.pkl', 'rb') as f:
            reward_rms = dill.load(f)
        with open('obs_rms.pkl', 'rb') as f:
            obs_rms = dill.load(f)
    else:
        reward_rms = RunningMeanStd()
        obs_rms = RunningMeanStd(shape=(1, 1, 84, 84))

        # normalize observation
        print('Initializing observation normalization...')
        next_obs = []
        for step in range(args.num_step * args.pre_obs_norm_steps):
            actions = np.random.randint(0, output_size, size=(args.num_worker,))

            for parent_conn, action in zip(parent_conns, actions):
                parent_conn.send(action)

            for parent_conn in parent_conns:
                next_state, reward, done, realdone, log_reward = parent_conn.recv()
                next_obs.append(next_state[3, :, :].reshape([1, 84, 84]))

            if len(next_obs) % (args.num_step * args.num_worker) == 0:
                next_obs = np.stack(next_obs)
                obs_rms.update(next_obs)
                next_obs = []
        with open('reward_rms.pkl', 'wb') as f:
            dill.dump(reward_rms, f)
        with open('obs_rms.pkl', 'wb') as f:
            dill.dump(obs_rms, f)

    print('Training...')
    while True:
        total_state, total_reward, total_done, total_next_state, total_action, total_int_reward, total_next_obs, total_ext_values, total_int_values, total_action_probs = [], [], [], [], [], [], [], [], [], []
        global_step += (args.num_worker * args.num_step)
        global_update += 1

        # Step 1. n-step rollout
        for _ in range(args.num_step):
            actions, value_ext, value_int, action_probs = get_action(model, device, np.float32(states) / 255.)

            for parent_conn, action in zip(parent_conns, actions):
                parent_conn.send(action)

            next_states, rewards, dones, real_dones, log_rewards, next_obs = [], [], [], [], [], []
            for parent_conn in parent_conns:
                next_state, reward, done, real_done, log_reward = parent_conn.recv()
                next_states.append(next_state)
                rewards.append(reward)
                dones.append(done)
                real_dones.append(real_done)
                log_rewards.append(log_reward)
                next_obs.append(next_state[3, :, :].reshape([1, 84, 84]))

            next_states = np.stack(next_states)
            rewards = np.hstack(rewards)
            dones = np.hstack(dones)
            real_dones = np.hstack(real_dones)
            next_obs = np.stack(next_obs)

            # total reward = int reward + ext Reward
            intrinsic_reward = compute_intrinsic_reward(rnd, device,
                ((next_obs - obs_rms.mean) / np.sqrt(obs_rms.var)).clip(-5, 5))
            intrinsic_reward = np.hstack(intrinsic_reward)
            sample_i_rall += intrinsic_reward[sample_env_index]

            total_next_obs.append(next_obs)
            total_int_reward.append(intrinsic_reward)
            total_state.append(states)
            total_reward.append(rewards)
            total_done.append(dones)
            total_action.append(actions)
            total_ext_values.append(value_ext)
            total_int_values.append(value_int)
            total_action_probs.append(action_probs)

            states = next_states[:, :, :, :]

            sample_rall += log_rewards[sample_env_index]

            sample_step += 1
            if real_dones[sample_env_index]:
                sample_episode += 1
                writer.add_scalar('data/reward_per_epi', sample_rall, sample_episode)
                writer.add_scalar('data/reward_per_rollout', sample_rall, global_update)
                writer.add_scalar('data/step', sample_step, sample_episode)
                sample_rall = 0
                sample_step = 0
                sample_i_rall = 0

        # calculate last next value
        _, value_ext, value_int, _ = get_action(model, device, np.float32(states) / 255.)
        total_ext_values.append(value_ext)
        total_int_values.append(value_int)
        # --------------------------------------------------

        total_state = np.stack(total_state).transpose([1, 0, 2, 3, 4]).reshape([-1, 4, 84, 84])
        total_reward = np.stack(total_reward).transpose().clip(-1, 1)
        total_action = np.stack(total_action).transpose().reshape([-1])
        total_done = np.stack(total_done).transpose()
        total_next_obs = np.stack(total_next_obs).transpose([1, 0, 2, 3, 4]).reshape([-1, 1, 84, 84])
        total_ext_values = np.stack(total_ext_values).transpose()
        total_int_values = np.stack(total_int_values).transpose()
        total_logging_action_probs = np.vstack(total_action_probs)

        # Step 2. calculate intrinsic reward
        # running mean intrinsic reward
        total_int_reward = np.stack(total_int_reward).transpose()
        total_reward_per_env = np.array([discounted_reward.update(reward_per_step) for reward_per_step in total_int_reward.T])
        mean, std, count = np.mean(total_reward_per_env), np.std(total_reward_per_env), len(total_reward_per_env)
        reward_rms.update_from_moments(mean, std ** 2, count)

        # normalize intrinsic reward
        total_int_reward /= np.sqrt(reward_rms.var)
        writer.add_scalar('data/int_reward_per_epi', np.sum(total_int_reward) / args.num_worker, sample_episode)
        writer.add_scalar('data/int_reward_per_rollout', np.sum(total_int_reward) / args.num_worker, global_update)
        # -------------------------------------------------------------------------------------------

        # logging Max action probability
        writer.add_scalar('data/max_prob', total_logging_action_probs.max(1).mean(), sample_episode)

        # Step 3. make target and advantage
        # extrinsic reward calculate
        ext_target, ext_adv = make_train_data(total_reward,
                                              total_done,
                                              total_ext_values,
                                              args.ext_gamma,
                                              args.gae_lambda,
                                              args.num_step,
                                              args.num_worker,
                                              args.use_gae)

        # intrinsic reward calculate
        # None Episodic
        int_target, int_adv = make_train_data(total_int_reward,
                                              np.zeros_like(total_int_reward),
                                              total_int_values,
                                              args.int_gamma,
                                              args.gae_lambda,
                                              args.num_step,
                                              args.num_worker,
                                              args.use_gae)

        # add ext adv and int adv
        total_adv = int_adv * args.int_coef + ext_adv * args.ext_coef
        # -----------------------------------------------

        # Step 4. update obs normalize param
        obs_rms.update(total_next_obs)
        # -----------------------------------------------

        # Step 5. Training!
        train_model(args, device, output_size, model, rnd, optimizer,
                        np.float32(total_state) / 255., ext_target, int_target, total_action,
                        total_adv, ((total_next_obs - obs_rms.mean) / np.sqrt(obs_rms.var)).clip(-5, 5),
                        total_action_probs)

        if global_step % (args.num_worker * args.num_step * args.save_interval) == 0:
            print('Now Global Step :{}'.format(global_step))
            torch.save(model.state_dict(), model_path)
            torch.save(rnd.predictor.state_dict(), predictor_path)
            torch.save(rnd.target.state_dict(), target_path)

            """
            checkpoint_list = np.array([int(re.search(r"\d+(\.\d+)?", x)[0]) for x in glob.glob(os.path.join('trained_models', args.env_name+'*.model'))])
            if len(checkpoint_list) == 0:
                last_checkpoint = -1
            else:
                last_checkpoint = checkpoint_list.max()
            next_checkpoint = last_checkpoint + 1
            print("Latest Checkpoint is #{}, saving checkpoint is #{}.".format(last_checkpoint, next_checkpoint))

            incre_model_path = os.path.join(args.save_dir, args.env_name + str(next_checkpoint) + '.model')
            incre_predictor_path = os.path.join(args.save_dir, args.env_name + str(next_checkpoint) + '.pred')
            incre_target_path = os.path.join(args.save_dir, args.env_name + str(next_checkpoint) + '.target')
            with open(incre_model_path, 'wb') as f:
                torch.save(model.state_dict(), f)
            with open(incre_predictor_path, 'wb') as f:
                torch.save(rnd.predictor.state_dict(), f)
            with open(incre_target_path, 'wb') as f:
                torch.save(rnd.target.state_dict(), f)
            """
            if args.terminate and (global_step > args.terminate_steps):
                with open('reward_rms.pkl', 'wb') as f:
                    dill.dump(reward_rms, f)
                with open('obs_rms.pkl', 'wb') as f:
                    dill.dump(obs_rms, f)
                break
Exemplo n.º 5
0
class RNDAgent(object):
    def __init__(self,
                 input_size,
                 output_size,
                 num_env,
                 num_step,
                 gamma,
                 lam=0.95,
                 learning_rate=1e-4,
                 ent_coef=0.01,
                 clip_grad_norm=0.5,
                 epoch=3,
                 batch_size=128,
                 ppo_eps=0.1,
                 update_proportion=0.25,
                 use_gae=True,
                 use_cuda=False):

        # Build the PPO Model
        self.model = PPOModel(input_size, output_size)

        self.num_env = num_env
        self.output_size = output_size
        self.input_size = input_size
        self.num_step = num_step
        self.gamma = gamma
        self.lam = lam
        self.epoch = epoch
        self.batch_size = batch_size
        self.use_gae = use_gae
        self.ent_coef = ent_coef
        self.ppo_eps = ppo_eps
        self.clip_grad_norm = clip_grad_norm
        self.update_proportion = update_proportion

        self.device = torch.device('cuda' if use_cuda else 'cpu')
        print("DEVICE: ", self.device)

        # Build the RND model
        self.rnd = RNDModel(input_size, output_size)

        # Define the optimizer (Adam)
        self.optimizer = optim.Adam(list(self.model.parameters()) +
                                    list(self.rnd.predictor.parameters()),
                                    lr=learning_rate)

        # CPU/GPU
        self.rnd = self.rnd.to(self.device)

        self.model = self.model.to(self.device)

    def get_action(self, state):
        # Transform our state into a float32 tensor
        state = torch.Tensor(state).to(self.device)
        state = state.float()

        # Get the action dist, ext_value, int_value
        policy, value_ext, value_int = self.model(state)

        # Get action probability distribution
        action_prob = F.softmax(policy, dim=-1).data.cpu().numpy()

        # Select action
        action = self.random_choice_prob_index(action_prob)

        return action, value_ext.data.cpu().numpy().squeeze(
        ), value_int.data.cpu().numpy().squeeze(), policy.detach()

    @staticmethod
    def random_choice_prob_index(p, axis=1):
        r = np.expand_dims(np.random.rand(p.shape[1 - axis]), axis=axis)
        return (p.cumsum(axis=axis) > r).argmax(axis=axis)

    # Calculate Intrinsic reward (prediction error)
    def compute_intrinsic_reward(self, next_obs):
        next_obs = torch.FloatTensor(next_obs).to(self.device)

        # Get target feature
        target_next_feature = self.rnd.target(next_obs)

        # Get prediction feature
        predict_next_feature = self.rnd.predictor(next_obs)

        # Calculate intrinsic reward
        intrinsic_reward = (target_next_feature -
                            predict_next_feature).pow(2).sum(1) / 2

        return intrinsic_reward.data.cpu().numpy()

    def train_model(self, s_batch, target_ext_batch, target_int_batch, y_batch,
                    adv_batch, next_obs_batch, old_policy):
        s_batch = torch.FloatTensor(s_batch).to(self.device)
        target_ext_batch = torch.FloatTensor(target_ext_batch).to(self.device)
        target_int_batch = torch.FloatTensor(target_int_batch).to(self.device)
        y_batch = torch.LongTensor(y_batch).to(self.device)
        adv_batch = torch.FloatTensor(adv_batch).to(self.device)
        next_obs_batch = torch.FloatTensor(next_obs_batch).to(self.device)

        sample_range = np.arange(len(s_batch))
        forward_mse = nn.MSELoss(reduction='none')

        # Get old policy
        with torch.no_grad():
            policy_old_list = torch.stack(old_policy).permute(
                1, 0, 2).contiguous().view(-1,
                                           self.output_size).to(self.device)

            m_old = Categorical(F.softmax(policy_old_list, dim=-1))
            log_prob_old = m_old.log_prob(y_batch)
            # ------------------------------------------------------------

        for i in range(self.epoch):
            # Here we'll do minibatches of training
            np.random.shuffle(sample_range)
            for j in range(int(len(s_batch) / self.batch_size)):
                sample_idx = sample_range[self.batch_size * j:self.batch_size *
                                          (j + 1)]

                # --------------------------------------------------------------------------------
                # for Curiosity-driven(Random Network Distillation)
                predict_next_state_feature, target_next_state_feature = self.rnd(
                    next_obs_batch[sample_idx])

                forward_loss = forward_mse(
                    predict_next_state_feature,
                    target_next_state_feature.detach()).mean(-1)
                # Proportion of exp used for predictor update
                mask = torch.rand(len(forward_loss)).to(self.device)
                mask = (mask < self.update_proportion).type(
                    torch.FloatTensor).to(self.device)
                forward_loss = (forward_loss * mask).sum() / torch.max(
                    mask.sum(),
                    torch.Tensor([1]).to(self.device))
                # ---------------------------------------------------------------------------------

                policy, value_ext, value_int = self.model(s_batch[sample_idx])
                m = Categorical(F.softmax(policy, dim=-1))
                log_prob = m.log_prob(y_batch[sample_idx])

                ratio = torch.exp(log_prob - log_prob_old[sample_idx])

                surr1 = ratio * adv_batch[sample_idx]
                surr2 = torch.clamp(ratio, 1.0 - self.ppo_eps,
                                    1.0 + self.ppo_eps) * adv_batch[sample_idx]

                # Calculate actor loss
                # - J is equivalent to max J hence -torch
                actor_loss = -torch.min(surr1, surr2).mean()

                # Calculate critic loss
                critic_ext_loss = F.mse_loss(value_ext.sum(1),
                                             target_ext_batch[sample_idx])
                critic_int_loss = F.mse_loss(value_int.sum(1),
                                             target_int_batch[sample_idx])

                # Critic loss = critic E loss + critic I loss
                critic_loss = critic_ext_loss + critic_int_loss

                # Calculate the entropy
                # Entropy is used to improve exploration by limiting the premature convergence to suboptimal policy.
                entropy = m.entropy().mean()

                # Reset the gradients
                self.optimizer.zero_grad()

                # CALCULATE THE LOSS
                # Total loss = Policy gradient loss - entropy * entropy coefficient + Value coefficient * value loss + forward_loss
                loss = actor_loss + 0.5 * critic_loss - self.ent_coef * entropy + forward_loss

                # Backpropagation
                loss.backward()
                global_grad_norm_(
                    list(self.model.parameters()) +
                    list(self.rnd.predictor.parameters()))
                self.optimizer.step()
class RNDAgent(object):
    def __init__(self,
                 input_size,
                 output_size,
                 num_env,
                 num_step,
                 gamma,
                 lam=0.95,
                 learning_rate=1e-4,
                 ent_coef=0.01,
                 clip_grad_norm=0.5,
                 epoch=3,
                 batch_size=128,
                 ppo_eps=0.1,
                 update_proportion=0.25,
                 use_gae=True,
                 use_cuda=False,
                 use_noisy_net=False):
        self.model = CnnActorCriticNetwork(input_size, output_size,
                                           use_noisy_net)
        self.num_env = num_env
        self.output_size = output_size
        self.input_size = input_size
        self.num_step = num_step
        self.gamma = gamma
        self.lam = lam
        self.epoch = epoch
        self.batch_size = batch_size
        self.use_gae = use_gae
        self.ent_coef = ent_coef
        self.ppo_eps = ppo_eps
        self.clip_grad_norm = clip_grad_norm
        self.update_proportion = update_proportion
        self.device = torch.device('cuda' if use_cuda else 'cpu')

        self.rnd = RNDModel(input_size, output_size)
        self.optimizer = optim.Adam(list(self.model.parameters()) +
                                    list(self.rnd.predictor.parameters()),
                                    lr=learning_rate)
        self.rnd = self.rnd.to(self.device)

        self.model = self.model.to(self.device)

    def get_action(self, state):
        state = torch.Tensor(state).to(self.device)
        state = state.float()
        policy, value_ext, value_int = self.model(state)
        action_prob = F.softmax(policy, dim=-1).data.cpu().numpy()

        action = self.random_choice_prob_index(action_prob)

        return action, value_ext.data.cpu().numpy().squeeze(
        ), value_int.data.cpu().numpy().squeeze(), policy.detach()

    @staticmethod
    def random_choice_prob_index(p, axis=1):
        r = np.expand_dims(np.random.rand(p.shape[1 - axis]), axis=axis)
        return (p.cumsum(axis=axis) > r).argmax(axis=axis)

    def compute_intrinsic_reward(self, next_obs):
        next_obs = torch.FloatTensor(next_obs).to(self.device)

        target_next_feature = self.rnd.target(next_obs)
        predict_next_feature = self.rnd.predictor(next_obs)
        intrinsic_reward = (target_next_feature -
                            predict_next_feature).pow(2).sum(1) / 2

        return intrinsic_reward.data.cpu().numpy()

    def train_model(self, s_batch, target_ext_batch, target_int_batch, y_batch,
                    adv_batch, next_obs_batch, old_policy):
        s_batch = torch.FloatTensor(s_batch).to(self.device)
        target_ext_batch = torch.FloatTensor(target_ext_batch).to(self.device)
        target_int_batch = torch.FloatTensor(target_int_batch).to(self.device)
        y_batch = torch.LongTensor(y_batch).to(self.device)
        adv_batch = torch.FloatTensor(adv_batch).to(self.device)
        next_obs_batch = torch.FloatTensor(next_obs_batch).to(self.device)

        sample_range = np.arange(len(s_batch))
        forward_mse = nn.MSELoss(reduction='none')

        with torch.no_grad():
            policy_old_list = torch.stack(old_policy).permute(
                1, 0, 2).contiguous().view(-1,
                                           self.output_size).to(self.device)

            m_old = Categorical(F.softmax(policy_old_list, dim=-1))
            log_prob_old = m_old.log_prob(y_batch)
            # ------------------------------------------------------------

        for i in range(self.epoch):
            np.random.shuffle(sample_range)
            for j in range(int(len(s_batch) / self.batch_size)):
                sample_idx = sample_range[self.batch_size * j:self.batch_size *
                                          (j + 1)]

                # --------------------------------------------------------------------------------
                # for Curiosity-driven(Random Network Distillation)
                predict_next_state_feature, target_next_state_feature = self.rnd(
                    next_obs_batch[sample_idx])

                forward_loss = forward_mse(
                    predict_next_state_feature,
                    target_next_state_feature.detach()).mean(-1)
                # Proportion of exp used for predictor update
                mask = torch.rand(len(forward_loss)).to(self.device)
                mask = (mask < self.update_proportion).type(
                    torch.FloatTensor).to(self.device)
                forward_loss = (forward_loss * mask).sum() / torch.max(
                    mask.sum(),
                    torch.Tensor([1]).to(self.device))
                # ---------------------------------------------------------------------------------

                policy, value_ext, value_int = self.model(s_batch[sample_idx])
                m = Categorical(F.softmax(policy, dim=-1))
                log_prob = m.log_prob(y_batch[sample_idx])

                ratio = torch.exp(log_prob - log_prob_old[sample_idx])

                surr1 = ratio * adv_batch[sample_idx]
                surr2 = torch.clamp(ratio, 1.0 - self.ppo_eps,
                                    1.0 + self.ppo_eps) * adv_batch[sample_idx]

                actor_loss = -torch.min(surr1, surr2).mean()
                critic_ext_loss = F.mse_loss(value_ext.sum(1),
                                             target_ext_batch[sample_idx])
                critic_int_loss = F.mse_loss(value_int.sum(1),
                                             target_int_batch[sample_idx])

                critic_loss = critic_ext_loss + critic_int_loss

                entropy = m.entropy().mean()

                self.optimizer.zero_grad()
                loss = actor_loss + 0.5 * critic_loss - self.ent_coef * entropy + forward_loss
                loss.backward()
                global_grad_norm_(
                    list(self.model.parameters()) +
                    list(self.rnd.predictor.parameters()))
                self.optimizer.step()
Exemplo n.º 7
0
def main():
    args = get_args()
    device = torch.device('cuda' if args.cuda else 'cpu')

    env = gym.make(args.env_name)

    input_size = env.observation_space.shape  # 4
    output_size = env.action_space.n  # 2

    if 'Breakout' in args.env_name:
        output_size -= 1

    env.close()

    is_render = False
    if not os.path.exists(args.save_dir):
        os.makedirs(args.save_dir)
    model_path = os.path.join(args.save_dir, args.env_name + '.model')
    predictor_path = os.path.join(args.save_dir, args.env_name + '.pred')
    target_path = os.path.join(args.save_dir, args.env_name + '.target')

    writer = SummaryWriter(log_dir=args.log_dir)

    reward_rms = RunningMeanStd()
    obs_rms = RunningMeanStd(shape=(1, 1, 84, 84))
    discounted_reward = RewardForwardFilter(args.ext_gamma)

    model = CnnActorCriticNetwork(input_size, output_size, args.use_noisy_net)
    rnd = RNDModel(input_size, output_size)
    model = model.to(device)
    rnd = rnd.to(device)
    optimizer = optim.Adam(list(model.parameters()) +
                           list(rnd.predictor.parameters()),
                           lr=args.lr)

    if args.load_model:
        if args.cuda:
            model.load_state_dict(torch.load(model_path))
        else:
            model.load_state_dict(torch.load(model_path, map_location='cpu'))

    works = []
    parent_conns = []
    child_conns = []
    for idx in range(args.num_worker):
        parent_conn, child_conn = Pipe()
        work = AtariEnvironment(args.env_name,
                                is_render,
                                idx,
                                child_conn,
                                sticky_action=args.sticky_action,
                                p=args.sticky_action_prob,
                                max_episode_steps=args.max_episode_steps)
        work.start()
        works.append(work)
        parent_conns.append(parent_conn)
        child_conns.append(child_conn)

    states = np.zeros([args.num_worker, 4, 84, 84])

    sample_env_index = 0  # Sample Environment index to log
    sample_episode = 0
    sample_rall = 0
    sample_step = 0
    sample_i_rall = 0
    global_update = 0
    global_step = 0

    # normalize observation
    print('Initializes observation normalization...')
    next_obs = []
    for step in range(args.num_step * args.pre_obs_norm_steps):
        actions = np.random.randint(0, output_size, size=(args.num_worker, ))

        for parent_conn, action in zip(parent_conns, actions):
            parent_conn.send(action)

        for parent_conn in parent_conns:
            next_state, reward, done, realdone, log_reward = parent_conn.recv()
            next_obs.append(next_state[3, :, :].reshape([1, 84, 84]))

        if len(next_obs) % (args.num_step * args.num_worker) == 0:
            next_obs = np.stack(next_obs)
            obs_rms.update(next_obs)
            next_obs = []

    print('Training...')
    while True:
        total_state, total_reward, total_done, total_next_state, total_action, total_int_reward, total_next_obs, total_ext_values, total_int_values, total_action_probs = [], [], [], [], [], [], [], [], [], []
        global_step += (args.num_worker * args.num_step)
        global_update += 1

        # Step 1. n-step rollout
        for _ in range(args.num_step):
            actions, value_ext, value_int, action_probs = get_action(
                model, device,
                np.float32(states) / 255.)

            for parent_conn, action in zip(parent_conns, actions):
                parent_conn.send(action)

            next_states, rewards, dones, real_dones, log_rewards, next_obs = [], [], [], [], [], []
            for parent_conn in parent_conns:
                next_state, reward, done, real_done, log_reward = parent_conn.recv(
                )
                next_states.append(next_state)
                rewards.append(reward)
                dones.append(done)
                real_dones.append(real_done)
                log_rewards.append(log_reward)
                next_obs.append(next_state[3, :, :].reshape([1, 84, 84]))

            next_states = np.stack(next_states)
            rewards = np.hstack(rewards)
            dones = np.hstack(dones)
            real_dones = np.hstack(real_dones)
            next_obs = np.stack(next_obs)

            # total reward = int reward + ext Reward
            intrinsic_reward = compute_intrinsic_reward(
                rnd, device,
                ((next_obs - obs_rms.mean) / np.sqrt(obs_rms.var)).clip(-5, 5))
            intrinsic_reward = np.hstack(intrinsic_reward)
            sample_i_rall += intrinsic_reward[sample_env_index]

            total_next_obs.append(next_obs)
            total_int_reward.append(intrinsic_reward)
            total_state.append(states)
            total_reward.append(rewards)
            total_done.append(dones)
            total_action.append(actions)
            total_ext_values.append(value_ext)
            total_int_values.append(value_int)
            total_action_probs.append(action_probs)

            states = next_states[:, :, :, :]

            sample_rall += log_rewards[sample_env_index]

            sample_step += 1
            if real_dones[sample_env_index]:
                sample_episode += 1
                writer.add_scalar('data/reward_per_epi', sample_rall,
                                  sample_episode)
                writer.add_scalar('data/reward_per_rollout', sample_rall,
                                  global_update)
                writer.add_scalar('data/step', sample_step, sample_episode)
                sample_rall = 0
                sample_step = 0
                sample_i_rall = 0

        # calculate last next value
        _, value_ext, value_int, _ = get_action(model, device,
                                                np.float32(states) / 255.)
        total_ext_values.append(value_ext)
        total_int_values.append(value_int)
        # --------------------------------------------------

        total_state = np.stack(total_state).transpose([1, 0, 2, 3, 4]).reshape(
            [-1, 4, 84, 84])
        total_reward = np.stack(total_reward).transpose().clip(-1, 1)
        total_action = np.stack(total_action).transpose().reshape([-1])
        total_done = np.stack(total_done).transpose()
        total_next_obs = np.stack(total_next_obs).transpose(
            [1, 0, 2, 3, 4]).reshape([-1, 1, 84, 84])
        total_ext_values = np.stack(total_ext_values).transpose()
        total_int_values = np.stack(total_int_values).transpose()
        total_logging_action_probs = np.vstack(total_action_probs)

        # Step 2. calculate intrinsic reward
        # running mean intrinsic reward
        total_int_reward = np.stack(total_int_reward).transpose()
        total_reward_per_env = np.array([
            discounted_reward.update(reward_per_step)
            for reward_per_step in total_int_reward.T
        ])
        mean, std, count = np.mean(total_reward_per_env), np.std(
            total_reward_per_env), len(total_reward_per_env)
        reward_rms.update_from_moments(mean, std**2, count)

        # normalize intrinsic reward
        total_int_reward /= np.sqrt(reward_rms.var)
        writer.add_scalar('data/int_reward_per_epi',
                          np.sum(total_int_reward) / args.num_worker,
                          sample_episode)
        writer.add_scalar('data/int_reward_per_rollout',
                          np.sum(total_int_reward) / args.num_worker,
                          global_update)
        # -------------------------------------------------------------------------------------------

        # logging Max action probability
        writer.add_scalar('data/max_prob',
                          total_logging_action_probs.max(1).mean(),
                          sample_episode)

        # Step 3. make target and advantage
        # extrinsic reward calculate
        ext_target, ext_adv = make_train_data(total_reward, total_done,
                                              total_ext_values, args.ext_gamma,
                                              args.gae_lambda, args.num_step,
                                              args.num_worker, args.use_gae)

        # intrinsic reward calculate
        # None Episodic
        int_target, int_adv = make_train_data(total_int_reward,
                                              np.zeros_like(total_int_reward),
                                              total_int_values, args.int_gamma,
                                              args.gae_lambda, args.num_step,
                                              args.num_worker, args.use_gae)

        # add ext adv and int adv
        total_adv = int_adv * args.int_coef + ext_adv * args.ext_coef
        # -----------------------------------------------

        # Step 4. update obs normalize param
        obs_rms.update(total_next_obs)
        # -----------------------------------------------

        # Step 5. Training!
        train_model(args, device, output_size, model, rnd, optimizer,
                    np.float32(total_state) / 255., ext_target, int_target,
                    total_action, total_adv,
                    ((total_next_obs - obs_rms.mean) /
                     np.sqrt(obs_rms.var)).clip(-5, 5), total_action_probs)

        if global_step % (args.num_worker * args.num_step *
                          args.save_interval) == 0:
            print('Now Global Step :{}'.format(global_step))
            torch.save(model.state_dict(), model_path)
            torch.save(rnd.predictor.state_dict(), predictor_path)
            torch.save(rnd.target.state_dict(), target_path)
Exemplo n.º 8
0
    def __init__(self,
                 input_size,
                 output_size,
                 seed,
                 num_env,
                 pre_obs_norm_step,
                 num_step,
                 gamma=0.99,
                 gamma_int=0.99,
                 lam=0.95,
                 int_coef=1.,
                 ext_coef=2.,
                 ent_coef=0.001,
                 cliprange=0.1,
                 max_grad_norm=0.0,
                 lr=1e-4,
                 nepochs=4,
                 batch_size=128,
                 update_proportion=0.25,
                 use_gae=True):

        self.num_env = num_env
        self.output_size = output_size
        self.input_size = input_size
        self.seed = np.random.seed(seed)

        self.pre_obs_norm_step = pre_obs_norm_step
        self.num_step = num_step
        self.gamma = gamma
        self.gamma_int = gamma_int
        self.lam = lam
        self.nepochs = nepochs
        self.batch_size = batch_size
        self.use_gae = use_gae
        self.int_coef = int_coef
        self.ext_coef = ext_coef
        self.ent_coef = ent_coef
        self.cliprange = cliprange
        self.max_grad_norm = max_grad_norm
        self.update_proportion = update_proportion

        self.device = torch.device(
            "cuda" if torch.cuda.is_available() else "cpu")
        self.model = CnnActorCritic(input_size, output_size,
                                    seed).to(self.device)
        self.rnd = RNDModel(input_size, output_size, seed).to(self.device)
        self.optimizer = optim.Adam(list(self.model.parameters()) +
                                    list(self.rnd.predictor.parameters()),
                                    lr=lr)

        self.rff_int = RewardForwardFilter(gamma)
        #self.rff_rms_int = RunningMeanStd()
        #self.obs_rms = RunningMeanStd(shape=(1,84,84))
        self.rff_rms_int = RunningMeanStd_openAI()
        self.obs_rms = RunningMeanStd_openAI(shape=(1, 84, 84))

        self.rooms = None
        self.n_rooms = []
        self.best_nrooms = -np.inf
        self.scores = []
        self.scores_window = deque(maxlen=100)

        self.stats = defaultdict(float)  # Count episodes and timesteps
        self.stats['epcount'] = 0
        self.stats['tcount'] = 0
Exemplo n.º 9
0
class RNDagent(object):
    def __init__(self,
                 input_size,
                 output_size,
                 seed,
                 num_env,
                 pre_obs_norm_step,
                 num_step,
                 gamma=0.99,
                 gamma_int=0.99,
                 lam=0.95,
                 int_coef=1.,
                 ext_coef=2.,
                 ent_coef=0.001,
                 cliprange=0.1,
                 max_grad_norm=0.0,
                 lr=1e-4,
                 nepochs=4,
                 batch_size=128,
                 update_proportion=0.25,
                 use_gae=True):

        self.num_env = num_env
        self.output_size = output_size
        self.input_size = input_size
        self.seed = np.random.seed(seed)

        self.pre_obs_norm_step = pre_obs_norm_step
        self.num_step = num_step
        self.gamma = gamma
        self.gamma_int = gamma_int
        self.lam = lam
        self.nepochs = nepochs
        self.batch_size = batch_size
        self.use_gae = use_gae
        self.int_coef = int_coef
        self.ext_coef = ext_coef
        self.ent_coef = ent_coef
        self.cliprange = cliprange
        self.max_grad_norm = max_grad_norm
        self.update_proportion = update_proportion

        self.device = torch.device(
            "cuda" if torch.cuda.is_available() else "cpu")
        self.model = CnnActorCritic(input_size, output_size,
                                    seed).to(self.device)
        self.rnd = RNDModel(input_size, output_size, seed).to(self.device)
        self.optimizer = optim.Adam(list(self.model.parameters()) +
                                    list(self.rnd.predictor.parameters()),
                                    lr=lr)

        self.rff_int = RewardForwardFilter(gamma)
        #self.rff_rms_int = RunningMeanStd()
        #self.obs_rms = RunningMeanStd(shape=(1,84,84))
        self.rff_rms_int = RunningMeanStd_openAI()
        self.obs_rms = RunningMeanStd_openAI(shape=(1, 84, 84))

        self.rooms = None
        self.n_rooms = []
        self.best_nrooms = -np.inf
        self.scores = []
        self.scores_window = deque(maxlen=100)

        self.stats = defaultdict(float)  # Count episodes and timesteps
        self.stats['epcount'] = 0
        self.stats['tcount'] = 0

    def collect_random_statistics(self, envs):
        """Initializes observation normalization with data from random agent."""
        all_ob = []
        all_ob.append(envs.reset())
        for _ in range(self.pre_obs_norm_step):
            actions = np.random.randint(0,
                                        self.output_size,
                                        size=(self.num_env, ))
            ob, _, _, _ = envs.step(actions)
            all_ob.append(ob)

            if len(all_ob) % (128 * self.num_env) == 0:
                ob_ = np.asarray(all_ob).astype(np.float32).reshape(
                    (-1, *envs.observation_space.shape))
                self.obs_rms.update(ob_[:, -1:, :, :])
                all_ob.clear()

    def act(self, state, action=None, calc_ent=False):
        """Returns dict of trajectory info.
        Shape
        ======
            state (uint8) : (batch_size, framestack=4, 84, 84)
        
        Returns example
            {'a': tensor([10,  5,  1]),
             'ent': None,
             'log_pi_a': tensor([-2.8904, -2.8904, -2.8904], grad_fn=<SqueezeBackward1>),
             'v_ext': tensor([0.0012, 0.0012, 0.0012], grad_fn=<SqueezeBackward0>),
             'v_int': tensor([-0.0013, -0.0013, -0.0013], grad_fn=<SqueezeBackward0>)}
        """
        #state = torch.FloatTensor(state / 255).to(self.device)
        assert state.dtype == 'uint8'
        state = torch.tensor(state / 255.,
                             dtype=torch.float,
                             device=self.device)
        #state = torch.from_numpy(state /255).float().to(self.device)

        action_probs, value_ext, value_int = self.model(state)
        dist = Categorical(action_probs)
        if action is None:
            action = dist.sample()
        log_prob = dist.log_prob(action)
        entropy = dist.entropy() if calc_ent else None

        return {
            'a': action,
            'log_pi_a': log_prob,
            'ent': entropy,
            'v_ext': value_ext.squeeze(),
            'v_int': value_int.squeeze()
        }

    def compute_intrinsic_reward(self, next_obs):
        """next_obs is the latest frame and must be normalized by RunningMeanStd(shape=(1, 84, 84))
        Shape
        ======
            next_obs : (batch_size, 1, 84, 84)
        """
        next_obs = torch.tensor(next_obs,
                                dtype=torch.float,
                                device=self.device)
        #next_obs = torch.FloatTensor(next_obs).to(self.device)

        target_next_feature = self.rnd.target(next_obs)
        predict_next_feature = self.rnd.predictor(next_obs)
        intrinsic_reward = (target_next_feature -
                            predict_next_feature).pow(2).mean(
                                1)  ### MSE  --- Issues
        #intrinsic_reward = (target_next_feature - predict_next_feature).pow(2).sum(1) / 2

        return intrinsic_reward.data.cpu().numpy()

    def step(self, envs):
        """
        """
        # Step 1. n-step rollout
        next_obs_batch, int_reward_batch, state_batch, reward_batch, done_batch, action_batch, values_ext_batch, values_int_batch, log_prob_old_batch = [],[],[],[],[],[],[],[],[]
        epinfos = []

        states = envs.reset()
        for _ in range(self.num_step):

            traj_info = self.act(states)

            log_prob_old = traj_info['log_pi_a'].detach().cpu().numpy()
            actions = traj_info['a'].cpu().numpy()
            value_ext = traj_info['v_ext'].detach().cpu().numpy()
            value_int = traj_info['v_int'].detach().cpu().numpy()

            next_states, rewards, dones, infos = envs.step(actions)

            next_obs = next_states[:, -1:, :, :]
            intrinsic_reward = self.compute_intrinsic_reward(
                ((next_obs - self.obs_rms.mean) /
                 (np.sqrt(self.obs_rms.var))).clip(-5, 5))  #+1e-10

            next_obs_batch.append(next_obs)
            int_reward_batch.append(intrinsic_reward)

            state_batch.append(states)
            reward_batch.append(rewards)
            done_batch.append(dones)
            action_batch.append(actions)
            values_ext_batch.append(value_ext)
            values_int_batch.append(value_int)
            log_prob_old_batch.append(log_prob_old)

            for info in infos:
                if 'episode' in info:
                    epinfos.append(info['episode'])

            states = next_states

        # calculate last next value
        last_traj_info = self.act(states)
        values_ext_batch.append(last_traj_info['v_ext'].detach().cpu().numpy())
        values_int_batch.append(last_traj_info['v_int'].detach().cpu().numpy())

        # convert to numpy array and transpose (num_env, num_step) from (num_step, num_env) for the later calculation
        # For self.update()
        state_batch = np.stack(state_batch).transpose(1, 0, 2, 3, 4).reshape(
            -1, 4, 84, 84)
        next_obs_batch = np.stack(next_obs_batch).transpose(1, 0, 2, 3,
                                                            4).reshape(
                                                                -1, 1, 84, 84)
        action_batch = np.stack(action_batch).transpose().reshape(-1, )
        log_prob_old_batch = np.stack(log_prob_old_batch).transpose().reshape(
            -1, )

        # For get_advantage_and_value_target_from()
        reward_batch = np.stack(reward_batch).transpose()
        done_batch = np.stack(done_batch).transpose()
        values_ext_batch = np.stack(values_ext_batch).transpose()
        values_int_batch = np.stack(values_int_batch).transpose()
        # --------------------------------------------------

        # Step 2. calculate intrinsic reward
        # running estimate of the intrinsic returns
        int_reward_batch = np.stack(int_reward_batch).transpose()
        discounted_reward_per_env = np.array([
            self.rff_int.update(reward_per_step)
            for reward_per_step in int_reward_batch.T[::-1]
        ])
        mean, std, count = np.mean(discounted_reward_per_env), np.std(
            discounted_reward_per_env), len(discounted_reward_per_env)
        self.rff_rms_int.update_from_moments(mean, std**2,
                                             count)  ### THINK ddof !

        # normalize intrinsic reward
        int_reward_batch /= np.sqrt(self.rff_rms_int.var)
        # -------------------------------------------------------------------------------------------

        # Step 3. make target and advantage
        # extrinsic reward calculate
        ext_target, ext_adv = get_advantage_and_value_target_from(
            reward_batch, done_batch, values_ext_batch, self.gamma, self.lam,
            self.num_step, self.num_env, self.use_gae)

        # intrinsic reward calculate
        # None Episodic
        int_target, int_adv = get_advantage_and_value_target_from(
            int_reward_batch, np.zeros_like(int_reward_batch),
            values_int_batch, self.gamma_int, self.lam, self.num_step,
            self.num_env, self.use_gae)

        # add ext adv and int adv
        total_advs = self.int_coef * int_adv + self.ext_coef * ext_adv
        # -----------------------------------------------

        # Step 4. update obs normalize param
        self.obs_rms.update(next_obs_batch)
        # -----------------------------------------------

        # Step 5. Train
        loss_infos = self.update(
            state_batch,
            ext_target,
            int_target,
            action_batch,
            total_advs,
            ((next_obs_batch - self.obs_rms.mean) /
             (np.sqrt(self.obs_rms.var))).clip(-5, 5),  #+1e-10
            log_prob_old_batch)
        # -----------------------------------------------

        # Collects info for reporting.
        vals_info = dict(
            advextmean=ext_adv.mean(),
            retextmean=ext_target.mean(),
            advintmean=int_adv.mean(),
            retintmean=int_target.mean(),
            rewintsample=int_reward_batch[1]  # env_number = 1
        )

        # Some reporting logic
        for epinfo in epinfos:
            #if self.testing:
            #    self.I.statlists['eprew_test'].append(epinfo['r'])
            #    self.I.statlists['eplen_test'].append(epinfo['l'])
            #else:
            if "visited_rooms" in epinfo:
                self.n_rooms.append(len(epinfo["visited_rooms"]))

                if self.best_nrooms is None:
                    self.best_nrooms = len(epinfo["visited_rooms"])
                elif len(epinfo["visited_rooms"]) > self.best_nrooms:
                    self.best_nrooms = len(epinfo["visited_rooms"])
                    self.rooms = sorted(list(epinfo["visited_rooms"]))
                #self.rooms += list(epinfo["visited_rooms"])
                #self.rooms = sorted(list(set(self.rooms)))
                #self.I.statlists['eprooms'].append(len(epinfo["visited_rooms"]))
            self.scores.append(epinfo['r'])
            self.scores_window.append(epinfo['r'])
            self.stats['epcount'] += 1
            self.stats['tcount'] += epinfo['l']
            #self.I.statlists['eprew'].append(epinfo['r'])
            #self.I.statlists['eplen'].append(epinfo['l'])
            #self.stats['rewtotal'] += epinfo['r']

        return {'loss': loss_infos, 'vals': vals_info}

    def update(self, s_batch, target_ext_batch, target_int_batch, action_batch,
               adv_batch, next_obs_batch, log_prob_old_batch):
        #s_batch = torch.FloatTensor(s_batch).to(self.device)
        target_ext_batch = torch.FloatTensor(target_ext_batch).to(self.device)
        target_int_batch = torch.FloatTensor(target_int_batch).to(self.device)
        action_batch = torch.LongTensor(action_batch).to(self.device)
        adv_batch = torch.FloatTensor(adv_batch).to(self.device)
        next_obs_batch = torch.FloatTensor(next_obs_batch).to(self.device)
        log_prob_old_batch = torch.FloatTensor(log_prob_old_batch).to(
            self.device)

        sample_range = np.arange(len(s_batch))
        forward_mse = nn.MSELoss(reduction='none')

        loss_infos = defaultdict(list)

        for _ in range(self.nepochs):
            np.random.shuffle(sample_range)
            for j in range(int(len(s_batch) / self.batch_size)):
                sample_idx = sample_range[self.batch_size * j:self.batch_size *
                                          (j + 1)]

                # --------------------------------------------------------------------------------
                # for Curiosity-driven(Random Network Distillation)
                predict_next_state_feature, target_next_state_feature = self.rnd(
                    next_obs_batch[sample_idx])
                forward_loss = forward_mse(
                    predict_next_state_feature,
                    target_next_state_feature.detach()).mean(-1)

                # Proportion of exp used for predictor update   ---  cf. cnn_policy_param_matched.py
                mask = torch.rand(len(forward_loss)).to(self.device)
                mask = (mask < self.update_proportion).float().to(self.device)
                forward_loss = (forward_loss * mask).sum() / torch.max(
                    mask.sum(),
                    torch.Tensor([1]).to(self.device))
                # ---------------------------------------------------------------------------------

                traj_info = self.act(s_batch[sample_idx],
                                     action_batch[sample_idx],
                                     calc_ent=True)

                ratio = torch.exp(traj_info['log_pi_a'] -
                                  log_prob_old_batch[sample_idx])

                surr1 = ratio * adv_batch[sample_idx]
                surr2 = torch.clamp(ratio, 1.0 - self.cliprange, 1.0 +
                                    self.cliprange) * adv_batch[sample_idx]

                policy_loss = -torch.min(surr1, surr2).mean()

                critic_ext_loss = F.mse_loss(traj_info['v_ext'],
                                             target_ext_batch[sample_idx])
                critic_int_loss = F.mse_loss(traj_info['v_int'],
                                             target_int_batch[sample_idx])
                value_loss = critic_ext_loss + critic_int_loss

                entropy = traj_info['ent'].mean()

                self.optimizer.zero_grad()
                loss = policy_loss + 0.5 * value_loss - self.ent_coef * entropy + forward_loss
                loss.backward()
                if self.max_grad_norm:
                    nn.utils.clip_grad_norm_(
                        list(self.model.parameters()) +
                        list(self.rnd.predictor.parameters()),
                        self.max_grad_norm)
                self.optimizer.step()

            _data = dict(policy=policy_loss.data.cpu().numpy(),
                         value_ext=critic_ext_loss.data.cpu().numpy(),
                         value_int=critic_int_loss.data.cpu().numpy(),
                         entropy=entropy.data.cpu().numpy(),
                         forward=forward_loss.data.cpu().numpy())
            for k, v in _data.items():
                loss_infos[k].append(v)

        return loss_infos