def main(): opt = Options(isTrain=False) opt.parse() opt.save_options() os.environ['CUDA_VISIBLE_DEVICES'] = ','.join( str(x) for x in opt.test['gpus']) img_dir = opt.test['img_dir'] label_dir = opt.test['label_dir'] save_dir = opt.test['save_dir'] model_path = opt.test['model_path'] save_flag = opt.test['save_flag'] # data transforms test_transform = get_transforms(opt.transform['test']) model = ResUNet34(pretrained=opt.model['pretrained']) model = torch.nn.DataParallel(model) model = model.cuda() cudnn.benchmark = True # ----- load trained model ----- # print("=> loading trained model") checkpoint = torch.load(model_path) model.load_state_dict(checkpoint['state_dict']) print("=> loaded model at epoch {}".format(checkpoint['epoch'])) model = model.module # switch to evaluate mode model.eval() counter = 0 print("=> Test begins:") img_names = os.listdir(img_dir) if save_flag: if not os.path.exists(save_dir): os.mkdir(save_dir) strs = img_dir.split('/') prob_maps_folder = '{:s}/{:s}_prob_maps'.format(save_dir, strs[-1]) seg_folder = '{:s}/{:s}_segmentation'.format(save_dir, strs[-1]) if not os.path.exists(prob_maps_folder): os.mkdir(prob_maps_folder) if not os.path.exists(seg_folder): os.mkdir(seg_folder) metric_names = ['acc', 'p_F1', 'p_recall', 'p_precision', 'dice', 'aji'] test_results = dict() all_result = utils.AverageMeter(len(metric_names)) for img_name in img_names: # load test image print('=> Processing image {:s}'.format(img_name)) img_path = '{:s}/{:s}'.format(img_dir, img_name) img = Image.open(img_path) ori_h = img.size[1] ori_w = img.size[0] name = os.path.splitext(img_name)[0] label_path = '{:s}/{:s}_label.png'.format(label_dir, name) gt = misc.imread(label_path) input = test_transform((img, ))[0].unsqueeze(0) print('\tComputing output probability maps...') prob_maps = get_probmaps(input, model, opt) pred = np.argmax(prob_maps, axis=0) # prediction pred_labeled = measure.label(pred) pred_labeled = morph.remove_small_objects(pred_labeled, opt.post['min_area']) pred_labeled = ndi_morph.binary_fill_holes(pred_labeled > 0) pred_labeled = measure.label(pred_labeled) print('\tComputing metrics...') metrics = compute_metrics(pred_labeled, gt, metric_names) # save result for each image test_results[name] = [ metrics['acc'], metrics['p_F1'], metrics['p_recall'], metrics['p_precision'], metrics['dice'], metrics['aji'] ] # update the average result all_result.update([ metrics['acc'], metrics['p_F1'], metrics['p_recall'], metrics['p_precision'], metrics['dice'], metrics['aji'] ]) # save image if save_flag: print('\tSaving image results...') misc.imsave('{:s}/{:s}_pred.png'.format(prob_maps_folder, name), pred.astype(np.uint8) * 255) misc.imsave('{:s}/{:s}_prob.png'.format(prob_maps_folder, name), prob_maps[1, :, :]) final_pred = Image.fromarray(pred_labeled.astype(np.uint16)) final_pred.save('{:s}/{:s}_seg.tiff'.format(seg_folder, name)) # save colored objects pred_colored_instance = np.zeros((ori_h, ori_w, 3)) for k in range(1, pred_labeled.max() + 1): pred_colored_instance[pred_labeled == k, :] = np.array( utils.get_random_color()) filename = '{:s}/{:s}_seg_colored.png'.format(seg_folder, name) misc.imsave(filename, pred_colored_instance) counter += 1 if counter % 10 == 0: print('\tProcessed {:d} images'.format(counter)) print('=> Processed all {:d} images'.format(counter)) print('Average Acc: {r[0]:.4f}\nF1: {r[1]:.4f}\nRecall: {r[2]:.4f}\n' 'Precision: {r[3]:.4f}\nDice: {r[4]:.4f}\nAJI: {r[5]:.4f}\n'.format( r=all_result.avg)) header = metric_names utils.save_results(header, all_result.avg, test_results, '{:s}/test_results.txt'.format(save_dir))
def main(opt): global best_score, logger, logger_results best_score = 0 opt.save_options() os.environ['CUDA_VISIBLE_DEVICES'] = ','.join( str(x) for x in opt.train['gpus']) # set up logger logger, logger_results = setup_logging(opt) opt.print_options(logger) if opt.train['random_seed'] >= 0: # logger.info("=> Using random seed {:d}".format(opt.train['random_seed'])) torch.manual_seed(opt.train['random_seed']) torch.cuda.manual_seed(opt.train['random_seed']) torch.backends.cudnn.deterministic = True torch.backends.cudnn.benchmark = False np.random.seed(opt.train['random_seed']) random.seed(opt.train['random_seed']) else: torch.backends.cudnn.benchmark = True # ----- create model ----- # model = ResUNet34(pretrained=opt.model['pretrained'], with_uncertainty=opt.with_uncertainty) # model = nn.DataParallel(model) model = model.cuda() # ----- define optimizer ----- # optimizer = torch.optim.Adam(model.parameters(), opt.train['lr'], betas=(0.9, 0.99), weight_decay=opt.train['weight_decay']) # ----- define criterion ----- # criterion = torch.nn.NLLLoss(ignore_index=2).cuda() # ----- load data ----- # data_transforms = { 'train': get_transforms(opt.transform['train']), 'val': get_transforms(opt.transform['val']) } img_dir = '{:s}/train'.format(opt.train['img_dir']) target_vor_dir = '{:s}/train'.format(opt.train['label_vor_dir']) target_cluster_dir = '{:s}/train'.format(opt.train['label_cluster_dir']) dir_list = [img_dir, target_vor_dir, target_cluster_dir] post_fix = ['label_vor.png', 'label_cluster.png'] num_channels = [3, 3, 3] train_set = DataFolder(dir_list, post_fix, num_channels, data_transforms['train']) train_loader = DataLoader(train_set, batch_size=opt.train['batch_size'], shuffle=True, num_workers=opt.train['workers']) # ----- optionally load from a checkpoint for validation or resuming training ----- # if opt.train['checkpoint']: if os.path.isfile(opt.train['checkpoint']): logger.info("=> loading checkpoint '{}'".format( opt.train['checkpoint'])) checkpoint = torch.load(opt.train['checkpoint']) opt.train['start_epoch'] = checkpoint['epoch'] model.load_state_dict(checkpoint['state_dict']) optimizer.load_state_dict(checkpoint['optimizer']) logger.info("=> loaded checkpoint '{}' (epoch {})".format( opt.train['checkpoint'], checkpoint['epoch'])) else: logger.info("=> no checkpoint found at '{}'".format( opt.train['checkpoint'])) # ----- training and validation ----- # num_epochs = opt.train['num_epochs'] for epoch in range(opt.train['start_epoch'], num_epochs): # train for one epoch or len(train_loader) iterations logger.info('Epoch: [{:d}/{:d}]'.format(epoch + 1, num_epochs)) train_loss, train_loss_vor, train_loss_cluster = train( opt, train_loader, model, optimizer, criterion) # evaluate on val set with torch.no_grad(): val_acc, val_aji = validate(opt, model, data_transforms['val']) # check if it is the best accuracy is_best = val_aji > best_score best_score = max(val_aji, best_score) cp_flag = (epoch + 1) % opt.train['checkpoint_freq'] == 0 save_checkpoint( { 'epoch': epoch + 1, 'state_dict': model.state_dict(), 'optimizer': optimizer.state_dict(), }, epoch, opt.train['save_dir'], is_best, cp_flag) # save the training results to txt files logger_results.info( '{:d}\t{:.4f}\t{:.4f}\t{:.4f}\t{:.4f}\t{:.4f}'.format( epoch + 1, train_loss, train_loss_vor, train_loss_cluster, val_acc, val_aji)) for i in list(logger.handlers): logger.removeHandler(i) i.flush() i.close() for i in list(logger_results.handlers): logger_results.removeHandler(i) i.flush() i.close()
def main(): params = Params() img_dir = params.test['img_dir'] label_dir = params.test['label_dir'] save_dir = params.test['save_dir'] if not os.path.exists(save_dir): os.mkdir(save_dir) model_path = params.test['model_path'] save_flag = params.test['save_flag'] tta = params.test['tta'] params.save_params('{:s}/test_params.txt'.format(params.test['save_dir']), test=True) # check if it is needed to compute accuracies eval_flag = True if label_dir else False if eval_flag: test_results = dict() # recall, precision, F1, dice, iou, haus tumor_result = utils.AverageMeter(7) lym_result = utils.AverageMeter(7) stroma_result = utils.AverageMeter(7) all_result = utils.AverageMeter(7) conf_matrix = np.zeros((3, 3)) # data transforms test_transform = get_transforms(params.transform['test']) model_name = params.model['name'] if model_name == 'ResUNet34': model = ResUNet34(params.model['out_c'], fixed_feature=params.model['fix_params']) elif params.model['name'] == 'UNet': model = UNet(3, params.model['out_c']) else: raise NotImplementedError() model = torch.nn.DataParallel(model) model = model.cuda() cudnn.benchmark = True # ----- load trained model ----- # print("=> loading trained model") best_checkpoint = torch.load(model_path) model.load_state_dict(best_checkpoint['state_dict']) print("=> loaded model at epoch {}".format(best_checkpoint['epoch'])) model = model.module # switch to evaluate mode model.eval() counter = 0 print("=> Test begins:") img_names = os.listdir(img_dir) if save_flag: if not os.path.exists(save_dir): os.mkdir(save_dir) strs = img_dir.split('/') prob_maps_folder = '{:s}/{:s}_prob_maps'.format(save_dir, strs[-1]) seg_folder = '{:s}/{:s}_segmentation'.format(save_dir, strs[-1]) if not os.path.exists(prob_maps_folder): os.mkdir(prob_maps_folder) if not os.path.exists(seg_folder): os.mkdir(seg_folder) # img_names = ['193-adca-5'] # total_time = 0.0 for img_name in img_names: # load test image print('=> Processing image {:s}'.format(img_name)) img_path = '{:s}/{:s}'.format(img_dir, img_name) img = Image.open(img_path) ori_h = img.size[1] ori_w = img.size[0] name = os.path.splitext(img_name)[0] if eval_flag: label_path = '{:s}/{:s}_label.png'.format(label_dir, name) gt = misc.imread(label_path) input = test_transform((img, ))[0].unsqueeze(0) print('\tComputing output probability maps...') prob_maps = get_probmaps(input, model, params) if tta: img_hf = img.transpose(Image.FLIP_LEFT_RIGHT) # horizontal flip img_vf = img.transpose(Image.FLIP_TOP_BOTTOM) # vertical flip img_hvf = img_hf.transpose( Image.FLIP_TOP_BOTTOM) # horizontal and vertical flips input_hf = test_transform( (img_hf, ))[0].unsqueeze(0) # horizontal flip input input_vf = test_transform( (img_vf, ))[0].unsqueeze(0) # vertical flip input input_hvf = test_transform((img_hvf, ))[0].unsqueeze( 0) # horizontal and vertical flip input prob_maps_hf = get_probmaps(input_hf, model, params) prob_maps_vf = get_probmaps(input_vf, model, params) prob_maps_hvf = get_probmaps(input_hvf, model, params) # re flip prob_maps_hf = np.flip(prob_maps_hf, 2) prob_maps_vf = np.flip(prob_maps_vf, 1) prob_maps_hvf = np.flip(np.flip(prob_maps_hvf, 1), 2) # rotation 90 and flips img_r90 = img.rotate(90, expand=True) img_r90_hf = img_r90.transpose( Image.FLIP_LEFT_RIGHT) # horizontal flip img_r90_vf = img_r90.transpose( Image.FLIP_TOP_BOTTOM) # vertical flip img_r90_hvf = img_r90_hf.transpose( Image.FLIP_TOP_BOTTOM) # horizontal and vertical flips input_r90 = test_transform((img_r90, ))[0].unsqueeze(0) input_r90_hf = test_transform( (img_r90_hf, ))[0].unsqueeze(0) # horizontal flip input input_r90_vf = test_transform( (img_r90_vf, ))[0].unsqueeze(0) # vertical flip input input_r90_hvf = test_transform((img_r90_hvf, ))[0].unsqueeze( 0) # horizontal and vertical flip input prob_maps_r90 = get_probmaps(input_r90, model, params) prob_maps_r90_hf = get_probmaps(input_r90_hf, model, params) prob_maps_r90_vf = get_probmaps(input_r90_vf, model, params) prob_maps_r90_hvf = get_probmaps(input_r90_hvf, model, params) # re flip prob_maps_r90 = np.rot90(prob_maps_r90, k=3, axes=(1, 2)) prob_maps_r90_hf = np.rot90(np.flip(prob_maps_r90_hf, 2), k=3, axes=(1, 2)) prob_maps_r90_vf = np.rot90(np.flip(prob_maps_r90_vf, 1), k=3, axes=(1, 2)) prob_maps_r90_hvf = np.rot90(np.flip(np.flip(prob_maps_r90_hvf, 1), 2), k=3, axes=(1, 2)) # utils.show_figures((np.array(img), np.array(img_r90_hvf), # np.swapaxes(np.swapaxes(prob_maps_r90_hvf, 0, 1), 1, 2))) prob_maps = (prob_maps + prob_maps_hf + prob_maps_vf + prob_maps_hvf + prob_maps_r90 + prob_maps_r90_hf + prob_maps_r90_vf + prob_maps_r90_hvf) / 8 pred = np.argmax(prob_maps, axis=0) # prediction pred_inside = pred.copy() pred_inside[pred == 4] = 0 # set contours to background pred_nuclei_inside_labeled = measure.label(pred_inside > 0) pred_tumor_inside = pred_inside == 1 pred_lym_inside = pred_inside == 2 pred_stroma_inside = pred_inside == 3 pred_3types_inside = pred_tumor_inside + pred_lym_inside * 2 + pred_stroma_inside * 3 # find the correct class for each segmented nucleus N_nuclei = len(np.unique(pred_nuclei_inside_labeled)) N_class = len(np.unique(pred_3types_inside)) intersection = np.histogram2d(pred_nuclei_inside_labeled.flatten(), pred_3types_inside.flatten(), bins=(N_nuclei, N_class))[0] classes = np.argmax(intersection, axis=1) tumor_nuclei_indices = np.nonzero(classes == 1) lym_nuclei_indices = np.nonzero(classes == 2) stroma_nuclei_indices = np.nonzero(classes == 3) # solve the problem of one nucleus assigned with different labels pred_tumor_inside = np.isin(pred_nuclei_inside_labeled, tumor_nuclei_indices) pred_lym_inside = np.isin(pred_nuclei_inside_labeled, lym_nuclei_indices) pred_stroma_inside = np.isin(pred_nuclei_inside_labeled, stroma_nuclei_indices) # remove small objects pred_tumor_inside = morph.remove_small_objects(pred_tumor_inside, params.post['min_area']) pred_lym_inside = morph.remove_small_objects(pred_lym_inside, params.post['min_area']) pred_stroma_inside = morph.remove_small_objects( pred_stroma_inside, params.post['min_area']) # connected component labeling pred_tumor_inside_labeled = measure.label(pred_tumor_inside) pred_lym_inside_labeled = measure.label(pred_lym_inside) pred_stroma_inside_labeled = measure.label(pred_stroma_inside) pred_all_inside_labeled = pred_tumor_inside_labeled * 3 \ + (pred_lym_inside_labeled * 3 - 2) * (pred_lym_inside_labeled>0) \ + (pred_stroma_inside_labeled * 3 - 1) * (pred_stroma_inside_labeled>0) # dilation pred_tumor_labeled = morph.dilation(pred_tumor_inside_labeled, selem=morph.selem.disk( params.post['radius'])) pred_lym_labeled = morph.dilation(pred_lym_inside_labeled, selem=morph.selem.disk( params.post['radius'])) pred_stroma_labeled = morph.dilation(pred_stroma_inside_labeled, selem=morph.selem.disk( params.post['radius'])) pred_all_labeled = morph.dilation(pred_all_inside_labeled, selem=morph.selem.disk( params.post['radius'])) # utils.show_figures([pred, pred2, pred_labeled]) if eval_flag: print('\tComputing metrics...') gt_tumor = (gt % 3 == 0) * gt gt_lym = (gt % 3 == 1) * gt gt_stroma = (gt % 3 == 2) * gt tumor_detect_metrics = utils.accuracy_detection_clas( pred_tumor_labeled, gt_tumor, clas_flag=False) lym_detect_metrics = utils.accuracy_detection_clas( pred_lym_labeled, gt_lym, clas_flag=False) stroma_detect_metrics = utils.accuracy_detection_clas( pred_stroma_labeled, gt_stroma, clas_flag=False) all_detect_metrics = utils.accuracy_detection_clas( pred_all_labeled, gt, clas_flag=True) tumor_seg_metrics = utils.accuracy_object_level( pred_tumor_labeled, gt_tumor, hausdorff_flag=False) lym_seg_metrics = utils.accuracy_object_level(pred_lym_labeled, gt_lym, hausdorff_flag=False) stroma_seg_metrics = utils.accuracy_object_level( pred_stroma_labeled, gt_stroma, hausdorff_flag=False) all_seg_metrics = utils.accuracy_object_level(pred_all_labeled, gt, hausdorff_flag=True) tumor_metrics = [*tumor_detect_metrics[:-1], *tumor_seg_metrics] lym_metrics = [*lym_detect_metrics[:-1], *lym_seg_metrics] stroma_metrics = [*stroma_detect_metrics[:-1], *stroma_seg_metrics] all_metrics = [*all_detect_metrics[:-1], *all_seg_metrics] conf_matrix += np.array(all_detect_metrics[-1]) # save result for each image test_results[name] = { 'tumor': tumor_metrics, 'lym': lym_metrics, 'stroma': stroma_metrics, 'all': all_metrics } # update the average result tumor_result.update(tumor_metrics) lym_result.update(lym_metrics) stroma_result.update(stroma_metrics) all_result.update(all_metrics) # save image if save_flag: print('\tSaving image results...') misc.imsave('{:s}/{:s}_pred.png'.format(prob_maps_folder, name), pred.astype(np.uint8) * 50) misc.imsave( '{:s}/{:s}_prob_tumor.png'.format(prob_maps_folder, name), prob_maps[1, :, :]) misc.imsave( '{:s}/{:s}_prob_lym.png'.format(prob_maps_folder, name), prob_maps[2, :, :]) misc.imsave( '{:s}/{:s}_prob_stroma.png'.format(prob_maps_folder, name), prob_maps[3, :, :]) # np.save('{:s}/{:s}_prob.npy'.format(prob_maps_folder, name), prob_maps) # np.save('{:s}/{:s}_seg.npy'.format(seg_folder, name), pred_all_labeled) final_pred = Image.fromarray(pred_all_labeled.astype(np.uint16)) final_pred.save('{:s}/{:s}_seg.tiff'.format(seg_folder, name)) # save colored objects pred_colored = np.zeros((ori_h, ori_w, 3)) pred_colored_instance = np.zeros((ori_h, ori_w, 3)) pred_colored[pred_tumor_labeled > 0] = np.array([255, 0, 0]) pred_colored[pred_lym_labeled > 0] = np.array([0, 255, 0]) pred_colored[pred_stroma_labeled > 0] = np.array([0, 0, 255]) filename = '{:s}/{:s}_seg_colored_3types.png'.format( seg_folder, name) misc.imsave(filename, pred_colored) for k in range(1, pred_all_labeled.max() + 1): pred_colored_instance[pred_all_labeled == k, :] = np.array( utils.get_random_color()) filename = '{:s}/{:s}_seg_colored.png'.format(seg_folder, name) misc.imsave(filename, pred_colored_instance) # img_overlaid = utils.overlay_edges(label_img, pred_labeled2, img) # filename = '{:s}/{:s}_comparison.png'.format(seg_folder, name) # misc.imsave(filename, img_overlaid) counter += 1 if counter % 10 == 0: print('\tProcessed {:d} images'.format(counter)) # print('Time: {:4f}'.format(total_time/counter)) print('=> Processed all {:d} images'.format(counter)) if eval_flag: print( 'Average: clas_acc\trecall\tprecision\tF1\tdice\tiou\thausdorff\n' 'tumor: {t[0]:.4f}, {t[1]:.4f}, {t[2]:.4f}, {t[3]:.4f}, {t[4]:.4f}, {t[5]:.4f}, {t[6]:.4f}\n' 'lym: {l[0]:.4f}, {l[1]:.4f}, {l[2]:.4f}, {l[3]:.4f}, {l[4]:.4f}, {l[5]:.4f}, {l[6]:.4f}\n' 'stroma: {s[0]:.4f}, {s[1]:.4f}, {s[2]:.4f}, {s[3]:.4f}, {s[4]:.4f}, {s[5]:.4f}, {s[6]:.4f}\n' 'all: {a[0]:.4f}, {a[1]:.4f}, {a[2]:.4f}, {a[3]:.4f}, {a[4]:.4f}, {a[5]:.4f}, {a[6]:.4f}' .format(t=tumor_result.avg, l=lym_result.avg, s=stroma_result.avg, a=all_result.avg)) header = [ 'clas_acc', 'recall', 'precision', 'F1', 'Dice', 'IoU', 'Hausdorff' ] save_results(header, tumor_result.avg, lym_result.avg, stroma_result.avg, all_result.avg, test_results, conf_matrix, '{:s}/test_result.txt'.format(save_dir))
def main(): global opt, num_iter, tb_writer, logger, logger_results opt = Options(isTrain=True) opt.parse() opt.save_options() tb_writer = SummaryWriter('{:s}/tb_logs'.format(opt.train['save_dir'])) os.environ['CUDA_VISIBLE_DEVICES'] = ','.join( str(x) for x in opt.train['gpus']) # set up logger logger, logger_results = setup_logging(opt) # ----- create model ----- # model = ResUNet34(pretrained=opt.model['pretrained']) # if not opt.train['checkpoint']: # logger.info(model) model = nn.DataParallel(model) model = model.cuda() cudnn.benchmark = True # ----- define optimizer ----- # optimizer = torch.optim.Adam(model.parameters(), opt.train['lr'], betas=(0.9, 0.99), weight_decay=opt.train['weight_decay']) # ----- define criterion ----- # criterion = torch.nn.NLLLoss(ignore_index=2).cuda() if opt.train['crf_weight'] > 0: logger.info('=> Using CRF loss...') global criterion_crf criterion_crf = CRFLoss(opt.train['sigmas'][0], opt.train['sigmas'][1]) # ----- load data ----- # data_transforms = { 'train': get_transforms(opt.transform['train']), 'test': get_transforms(opt.transform['test']) } img_dir = '{:s}/train'.format(opt.train['img_dir']) target_vor_dir = '{:s}/train'.format(opt.train['label_vor_dir']) target_cluster_dir = '{:s}/train'.format(opt.train['label_cluster_dir']) dir_list = [img_dir, target_vor_dir, target_cluster_dir] post_fix = ['label_vor.png', 'label_cluster.png'] num_channels = [3, 3, 3] train_set = DataFolder(dir_list, post_fix, num_channels, data_transforms['train']) train_loader = DataLoader(train_set, batch_size=opt.train['batch_size'], shuffle=True, num_workers=opt.train['workers']) # ----- optionally load from a checkpoint for validation or resuming training ----- # if opt.train['checkpoint']: if os.path.isfile(opt.train['checkpoint']): logger.info("=> loading checkpoint '{}'".format( opt.train['checkpoint'])) checkpoint = torch.load(opt.train['checkpoint']) opt.train['start_epoch'] = checkpoint['epoch'] model.load_state_dict(checkpoint['state_dict']) optimizer.load_state_dict(checkpoint['optimizer']) logger.info("=> loaded checkpoint '{}' (epoch {})".format( opt.train['checkpoint'], checkpoint['epoch'])) else: logger.info("=> no checkpoint found at '{}'".format( opt.train['checkpoint'])) # ----- training and validation ----- # num_epoch = opt.train['train_epochs'] + opt.train['finetune_epochs'] num_iter = num_epoch * len(train_loader) # print training parameters logger.info("=> Initial learning rate: {:g}".format(opt.train['lr'])) logger.info("=> Batch size: {:d}".format(opt.train['batch_size'])) logger.info("=> Number of training iterations: {:d}".format(num_iter)) logger.info("=> Training epochs: {:d}".format(opt.train['train_epochs'])) logger.info("=> Fine-tune epochs using dense CRF loss: {:d}".format( opt.train['finetune_epochs'])) logger.info("=> CRF loss weight: {:.2g}".format(opt.train['crf_weight'])) for epoch in range(opt.train['start_epoch'], num_epoch): # train for one epoch or len(train_loader) iterations logger.info('Epoch: [{:d}/{:d}]'.format(epoch + 1, num_epoch)) finetune_flag = False if epoch < opt.train['train_epochs'] else True if epoch == opt.train['train_epochs']: logger.info("Fine-tune begins, lr = {:.2g}".format( opt.train['lr'] * 0.1)) for param_group in optimizer.param_groups: param_group['lr'] = opt.train['lr'] * 0.1 train_results = train(train_loader, model, optimizer, criterion, finetune_flag) train_loss, train_loss_vor, train_loss_cluster, train_loss_crf = train_results cp_flag = (epoch + 1) % opt.train['checkpoint_freq'] == 0 save_checkpoint( { 'epoch': epoch + 1, 'state_dict': model.state_dict(), 'optimizer': optimizer.state_dict(), }, epoch, opt.train['save_dir'], cp_flag) # save the training results to txt files logger_results.info('{:d}\t{:.4f}\t{:.4f}\t{:.4f}\t{:.4f}'.format( epoch + 1, train_loss, train_loss_vor, train_loss_cluster, train_loss_crf)) # tensorboard logs tb_writer.add_scalars( 'epoch_losses', { 'train_loss': train_loss, 'train_loss_vor': train_loss_vor, 'train_loss_cluster': train_loss_cluster, 'train_loss_crf': train_loss_crf }, epoch) tb_writer.close() for i in list(logger.handlers): logger.removeHandler(i) i.flush() i.close() for i in list(logger_results.handlers): logger_results.removeHandler(i) i.flush() i.close()
def main(opt, save_dir): os.environ['CUDA_VISIBLE_DEVICES'] = ','.join( str(x) for x in opt.test['gpus']) # img_dir = opt.test['img_dir'] ratio = opt.ratio img_dir = './data/{:s}/images'.format(opt.dataset) label_dir = './data/{:s}/labels_point'.format(opt.dataset) label_instance_dir = './data/{:s}/labels_instance'.format(opt.dataset) # save_dir = './data/{:s}/selected_masks'.format(opt.dataset) if not os.path.exists(save_dir): os.makedirs(save_dir, exist_ok=True) model_path = opt.test['model_path'] # data transforms test_transform = get_transforms(opt.transform['test']) model = ResUNet34(pretrained=opt.model['pretrained'], with_uncertainty=opt.with_uncertainty) model = model.cuda() cudnn.benchmark = True # ----- load trained model ----- # # print("=> loading trained model") checkpoint = torch.load(model_path) model.load_state_dict(checkpoint['state_dict']) # print("=> loaded model at epoch {}".format(checkpoint['epoch'])) # switch to evaluate mode model.eval() apply_dropout(model) with open('./data/{:s}/train_val_test.json'.format(opt.dataset), 'r') as file: data_list = json.load(file) train_list = data_list['train'] for img_name in tqdm(train_list): # load test image # print('=> Processing image {:s}'.format(img_name)) img_path = '{:s}/{:s}'.format(img_dir, img_name) img = Image.open(img_path) ori_h = img.size[1] ori_w = img.size[0] name = os.path.splitext(img_name)[0] label_point = misc.imread('{:s}/{:s}_label_point.png'.format( label_dir, name)) input = test_transform((img, ))[0].unsqueeze(0) # print('\tComputing unertainty maps...') mean_sigma = np.zeros((2, ori_h, ori_w)) mean_sigma_normalized = np.zeros((2, ori_h, ori_w)) mean_prob = np.zeros((2, ori_h, ori_w)) for _ in range(opt.T): output, log_var = get_probmaps(input, model, opt) output = output.astype(np.float64) log_var = log_var.astype(np.float64) sigma_map = np.exp(log_var / 2) sigma_map_normalized = sigma_map / (np.exp(output) + 1e-8) mean_prob += np.exp(output) / np.sum(np.exp(output), axis=0) mean_sigma += sigma_map mean_sigma_normalized += sigma_map_normalized mean_prob /= opt.T mean_sigma /= opt.T mean_sigma_normalized /= opt.T un_data_normalized = mean_sigma_normalized**2 pred = np.argmax(mean_prob, axis=0) un_data_normalized = np.sum(un_data_normalized * utils.onehot_encoding(pred), axis=0) # find the area of largest uncertainty for visualization threshed = un_data_normalized > 1.0 large_unc_area = morph.opening(threshed, selem=morph.disk(1)) large_unc_area = morph.remove_small_objects(large_unc_area, min_size=64) un_data_smoothed = gaussian_filter(un_data_normalized * large_unc_area, sigma=5) # cmap = plt.cm.jet # plt.imsave('{:s}/{:s}_uncertainty.png'.format(save_dir, name), cmap(un_data_normalized)) points = measure.label(label_point) uncertainty_list = [] radius = 10 for k in range(1, np.max(points) + 1): x, y = np.argwhere(points == k)[0] r1 = x - radius if x - radius > 0 else 0 r2 = x + radius if x + radius < ori_h else ori_h c1 = y - radius if y - radius > 0 else 0 c2 = y + radius if y + radius < ori_w else ori_w uncertainty = np.mean(un_data_smoothed[r1:r2, c1:c2]) uncertainty_list.append([k, uncertainty]) uncertainty_list = np.array(uncertainty_list) sorted_list = uncertainty_list[uncertainty_list[:, 1].argsort()[::-1]] indices = sorted_list[:int(ratio * np.max(points)), 0] # annotation label_instance = misc.imread('{:s}/{:s}_label.png'.format( label_instance_dir, name)) new_anno = np.zeros_like(label_instance) counter = 1 for idx in indices: nuclei_idx = np.unique(label_instance[points == idx])[0] if nuclei_idx == 0: continue new_anno += (label_instance == nuclei_idx) * counter counter += 1 # utils.show_figures((new_anno,)) misc.imsave('{:s}/{:s}_label_partial_mask.png'.format(save_dir, name), new_anno.astype(np.uint8)) misc.imsave( '{:s}/{:s}_label_partial_mask_binary.png'.format(save_dir, name), (new_anno > 0).astype(np.uint8) * 255) print('=> Processed all images')
def main(): global params, best_iou, num_iter, tb_writer, logger, logger_results best_iou = 0 params = Params() params.save_params('{:s}/params.txt'.format(params.paths['save_dir'])) tb_writer = SummaryWriter('{:s}/tb_logs'.format(params.paths['save_dir'])) os.environ['CUDA_VISIBLE_DEVICES'] = ','.join( str(x) for x in params.train['gpu']) # set up logger logger, logger_results = setup_logging(params) # ----- create model ----- # model_name = params.model['name'] if model_name == 'ResUNet34': model = ResUNet34(params.model['out_c'], fixed_feature=params.model['fix_params']) elif params.model['name'] == 'UNet': model = UNet(3, params.model['out_c']) else: raise NotImplementedError() logger.info('Model: {:s}'.format(model_name)) # if not params.train['checkpoint']: # logger.info(model) model = nn.DataParallel(model) model = model.cuda() global vgg_model logger.info('=> Using VGG16 for perceptual loss...') vgg_model = vgg16_feat() vgg_model = nn.DataParallel(vgg_model).cuda() cudnn.benchmark = True # ----- define optimizer ----- # optimizer = torch.optim.Adam(model.parameters(), params.train['lr'], betas=(0.9, 0.99), weight_decay=params.train['weight_decay']) # ----- get pixel weights and define criterion ----- # if not params.train['weight_map']: criterion = torch.nn.NLLLoss().cuda() else: logger.info('=> Using weight maps...') criterion = torch.nn.NLLLoss(reduction='none').cuda() if params.train['beta'] > 0: logger.info('=> Using perceptual loss...') global criterion_perceptual criterion_perceptual = perceptual_loss() data_transforms = { 'train': get_transforms(params.transform['train']), 'val': get_transforms(params.transform['val']) } # ----- load data ----- # dsets = {} for x in ['train', 'val']: img_dir = '{:s}/{:s}'.format(params.paths['img_dir'], x) target_dir = '{:s}/{:s}'.format(params.paths['label_dir'], x) if params.train['weight_map']: weight_map_dir = '{:s}/{:s}'.format(params.paths['weight_map_dir'], x) dir_list = [img_dir, weight_map_dir, target_dir] postfix = ['weight.png', 'label_with_contours.png'] num_channels = [3, 1, 3] else: dir_list = [img_dir, target_dir] postfix = ['label_with_contours.png'] num_channels = [3, 3] dsets[x] = DataFolder(dir_list, postfix, num_channels, data_transforms[x]) train_loader = DataLoader(dsets['train'], batch_size=params.train['batch_size'], shuffle=True, num_workers=params.train['workers']) val_loader = DataLoader(dsets['val'], batch_size=params.train['val_batch_size'], shuffle=False, num_workers=params.train['workers']) # ----- optionally load from a checkpoint for validation or resuming training ----- # if params.train['checkpoint']: if os.path.isfile(params.train['checkpoint']): logger.info("=> loading checkpoint '{}'".format( params.train['checkpoint'])) checkpoint = torch.load(params.train['checkpoint']) params.train['start_epoch'] = checkpoint['epoch'] best_iou = checkpoint['best_iou'] model.load_state_dict(checkpoint['state_dict']) optimizer.load_state_dict(checkpoint['optimizer']) logger.info("=> loaded checkpoint '{}' (epoch {})".format( params.train['checkpoint'], checkpoint['epoch'])) else: logger.info("=> no checkpoint found at '{}'".format( params.train['checkpoint'])) # ----- training and validation ----- # num_iter = params.train['num_epochs'] * len(train_loader) # print training parameters logger.info("=> Initial learning rate: {:g}".format(params.train['lr'])) logger.info("=> Batch size: {:d}".format(params.train['batch_size'])) # logger.info("=> Number of training iterations: {:d}".format(num_iter)) logger.info("=> Training epochs: {:d}".format(params.train['num_epochs'])) logger.info("=> beta: {:.1f}".format(params.train['beta'])) for epoch in range(params.train['start_epoch'], params.train['num_epochs']): # train for one epoch or len(train_loader) iterations logger.info('Epoch: [{:d}/{:d}]'.format(epoch + 1, params.train['num_epochs'])) train_results = train(train_loader, model, optimizer, criterion, epoch) train_loss, train_loss_ce, train_loss_var, train_iou_nuclei, train_iou = train_results # evaluate on validation set with torch.no_grad(): val_results = validate(val_loader, model, criterion) val_loss, val_loss_ce, val_loss_var, val_iou_nuclei, val_iou = val_results # check if it is the best accuracy combined_iou = (val_iou_nuclei + val_iou) / 2 is_best = combined_iou > best_iou best_iou = max(combined_iou, best_iou) cp_flag = (epoch + 1) % params.train['checkpoint_freq'] == 0 save_checkpoint( { 'epoch': epoch + 1, 'state_dict': model.state_dict(), 'best_iou': best_iou, 'optimizer': optimizer.state_dict(), }, epoch, is_best, params.paths['save_dir'], cp_flag) # save the training results to txt files logger_results.info( '{:d}\t{:.4f}\t{:.4f}\t{:.4f}\t{:.4f}\t{:.4f}\t{:.4f}\t{:.4f}\t{:.4f}' .format(epoch + 1, train_loss, train_loss_ce, train_loss_var, train_iou_nuclei, train_iou, val_loss, val_iou_nuclei, val_iou)) # tensorboard logs tb_writer.add_scalars( 'epoch_losses', { 'train_loss': train_loss, 'train_loss_ce': train_loss_ce, 'train_loss_var': train_loss_var, 'val_loss': val_loss }, epoch) tb_writer.add_scalars( 'epoch_accuracies', { 'train_iou_nuclei': train_iou_nuclei, 'train_iou': train_iou, 'val_iou_nuclei': val_iou_nuclei, 'val_iou': val_iou }, epoch) tb_writer.close()