Exemplo n.º 1
0
def main():
    print("loading data...")
    ds = dataset.Dataset(classes=classes)
    train_X, train_y = ds.load_data('train')

    train_X = ds.preprocess_inputs(train_X)
    train_Y = ds.reshape_labels(train_y)
    print("input data shape...", train_X.shape)
    print("input label shape...", train_Y.shape)

    test_X, test_y = ds.load_data('test')
    test_X = ds.preprocess_inputs(test_X)
    test_Y = ds.reshape_labels(test_y)
    print("creating model...")
    model = SegNet(input_shape=input_shape, classes=classes)
    model.compile(loss="categorical_crossentropy",
                  optimizer='adadelta',
                  metrics=["accuracy"])

    model.fit(train_X,
              train_Y,
              batch_size=batch_size,
              epochs=epochs,
              verbose=1,
              class_weight=class_weighting,
              validation_data=(test_X, test_Y),
              shuffle=True)

    model.save('seg.h5')
Exemplo n.º 2
0
def main():
    input_shape = (360, 480, 3)
    classes = 12
    epochs = 100
    batch_size = 1
    log_path = './logs/'

    class_weighting = [
        0.2595, 0.1826, 4.5640, 0.1417, 0.5051, 0.3826, 9.6446, 1.8418, 6.6823,
        6.2478, 3.0, 7.3614
    ]
    # set gpu usage
    config = tf.ConfigProto(gpu_options=tf.GPUOptions(
        allow_growth=True, per_process_gpu_memory_fraction=0.8))
    session = tf.Session(config=config)
    set_session(session)

    print("loading data...")
    ds = dataset.Dataset(classes=classes,
                         train_file="CamVid/train.txt",
                         test_file="CamVid/test.txt")
    # need to implement, y shape is (None, 360, 480, classes)
    train_x, train_y = ds.load_data(root_path="CamVid", mode='train')

    train_x = ds.preprocess_inputs(train_x)
    train_y = ds.reshape_labels(train_y)
    print("input data shape...", train_x.shape)
    print("input label shape...", train_y.shape)

    # need to implement, y shape is (None, 360, 480, classes)
    test_x, test_y = ds.load_data(root_path="CamVid", mode='test')
    test_x = ds.preprocess_inputs(test_x)
    test_y = ds.reshape_labels(test_y)

    tb_cb = TensorBoard(log_dir=log_path,
                        histogram_freq=1,
                        write_graph=True,
                        write_images=True)

    print("creating model...")
    model = SegNet(input_shape=input_shape, classes=classes)
    model.compile(loss="categorical_crossentropy",
                  optimizer='adadelta',
                  metrics=["accuracy"])

    model.fit(train_x,
              train_y,
              batch_size=batch_size,
              epochs=epochs,
              verbose=1,
              class_weight=class_weighting,
              validation_data=(test_x, test_y),
              shuffle=True,
              callbacks=[tb_cb])

    model.save('seg.h5')
Exemplo n.º 3
0
def main():
    print("loading data...")
    ds = dataset.DataSet(classes=classes)
    train_X, train_y = ds.load_data(
        'train')  # need to implement, y shape is (None, 360, 480, classes)

    train_X = ds.preprocess_inputs(train_X)
    train_Y = ds.reshape_labels(train_y)
    print("input data shape...", train_X.shape)
    print("input label shape...", train_Y.shape)

    test_X, test_y = ds.load_data(
        'test')  # need to implement, y shape is (None, 360, 480, classes)
    test_X = ds.preprocess_inputs(test_X)
    test_Y = ds.reshape_labels(test_y)

    tb_cb = keras.callbacks.TensorBoard(log_dir=log_filepath,
                                        histogram_freq=1,
                                        write_graph=True,
                                        write_images=True)
    fpath = 'weights.{epoch:02d}.hdf5'
    mc_cb = keras.callbacks.ModelCheckpoint(fpath,
                                            monitor='val_loss',
                                            verbose=0,
                                            save_best_only=False,
                                            save_weights_only=False,
                                            mode='auto',
                                            period=3)

    print("creating model...")
    model = SegNet(input_shape=input_shape, classes=classes)
    model.compile(loss="categorical_crossentropy",
                  optimizer='adadelta',
                  metrics=["accuracy"])

    model.fit(train_X,
              train_Y,
              batch_size=batch_size,
              epochs=epochs,
              verbose=1,
              class_weight=class_weighting,
              validation_data=(test_X[0:5], test_Y[0:5]),
              shuffle=True,
              callbacks=[mc_cb, tb_cb])

    model.save('seg.h5')
Exemplo n.º 4
0
def main():
    print("loading data...")
    ds = dataset.Dataset(test_file='test_5.txt', classes=classes)
    train_X, train_y = ds.load_data('train') # need to implement, y shape is (None, 360, 480, classes)

    train_X = ds.preprocess_inputs(train_X)
    train_Y = ds.reshape_labels(train_y)
    print("input data shape...", train_X.shape)
    print("input label shape...", train_Y.shape)

    test_X, test_y = ds.load_data('test') # need to implement, y shape is (None, 360, 480, classes)
    test_X = ds.preprocess_inputs(test_X)
    test_Y = ds.reshape_labels(test_y)

    tb_cb = keras.callbacks.TensorBoard(log_dir=log_filepath, histogram_freq=1, write_graph=True, write_images=True)
    print("creating model...")
    model = SegNet(input_shape=input_shape, classes=classes)
    model.compile(loss="categorical_crossentropy", optimizer='adadelta', metrics=["accuracy"])

    model.fit(train_X, train_Y, batch_size=batch_size, epochs=epochs,
              verbose=1, class_weight=class_weighting , validation_data=(test_X, test_Y), shuffle=True
              , callbacks=[tb_cb])

    model.save('s.h5')
Exemplo n.º 5
0
x_train = np.asarray(images) / 255.0
x_train = np.delete(x_train, len(x_train) - 1, axis=0)
print(x_train.shape)
# sys.exit()

x_test = np.asarray(testImages) / 255.0
x_test = np.delete(x_test, len(x_test) - 1, axis=0)

y_train = sc.fit_transform(np.asarray(controls))

# Prepare model for training
model = SegNet((IMG_H, IMG_W))

model.compile(optimizer='adam', loss='mean_squared_error')

model.fit(x_train, y_train, epochs=EPOCHS, batch_size=BATCH_SIZE)

if not os.path.exists('models'):
    os.mkdir('models')

model.save_weights('models/res.h5', save_format='h5')

# Predict on testing dataset
predictions = model.predict(x_test)
predictions = sc.inverse_transform(predictions)
print(predictions)

# Show results and compare
plt.plot(testControls, color='blue', label=f'Real steering')
plt.plot(predictions, color='red', label=f'Predicted steering')
plt.title(f"Steering Angle Prediction")
Exemplo n.º 6
0
def main():

    # Parse arguments.
    parser = argparse.ArgumentParser()
    kwargs = {
        'type': int,
        'default': 100,
        'help': 'The number of times of learning. default: 100'
    }
    parser.add_argument('-e', '--epochs', **kwargs)
    kwargs = {
        'type': int,
        'default': 10,
        'help': 'The frequency of saving model. default: 10'
    }
    parser.add_argument('-c', '--checkpoint_interval', **kwargs)
    kwargs = {
        'type': int,
        'default': 1,
        'help': 'The number of samples contained per mini batch. default: 1'
    }
    parser.add_argument('-b', '--batch_size', **kwargs)
    kwargs = {
        'default':
        False,
        'action':
        'store_true',
        'help':
        'Whether store all data to GPU. If not specified this option, use both CPU memory and GPU memory.'
    }
    parser.add_argument('--onmemory', **kwargs)
    args = parser.parse_args()

    # Prepare training data.
    dataset = np.load('./temp/dataset.npz')
    train_x = dataset['train_x']
    train_y = dataset['train_y']
    test_x = dataset['test_x']
    test_y = dataset['test_y']

    # Prepare tensorflow.
    config = tf.ConfigProto(gpu_options=tf.GPUOptions(allow_growth=True))
    session = tf.Session(config=config)
    keras.backend.tensorflow_backend.set_session(session)

    # Prepare model.
    model = SegNet(shape=(360, 480, 3))
    model.compile(loss='binary_crossentropy',
                  optimizer='adadelta',
                  metrics=['accuracy'])

    # Training.
    callbacks = []
    timestamp = datetime.datetime.now().strftime("%Y%m%d%H%M%S")
    directory = f'./logs/{timestamp}/'
    os.makedirs(directory, exist_ok=True)
    callbacks.append(keras.callbacks.TensorBoard(log_dir=directory))

    filename = 'model-{epoch:04d}.h5'
    directory = f'./temp/{timestamp}/'
    os.makedirs(directory, exist_ok=True)
    callbacks.append(
        keras.callbacks.ModelCheckpoint(filepath=f'{directory}{filename}',
                                        monitor='val_loss',
                                        verbose=0,
                                        save_best_only=False,
                                        save_weights_only=False,
                                        mode='auto',
                                        period=args.checkpoint_interval))

    model.save_weights(f'{directory}{filename}'.format(epoch=0))

    if args.onmemory:
        model.fit(x=train_x,
                  y=train_y,
                  validation_data=(test_x, test_y),
                  epochs=args.epochs,
                  batch_size=args.batch_size,
                  class_weight='balanced',
                  shuffle=True,
                  verbose=1,
                  callbacks=callbacks)
    else:

        class Generator(keras.utils.Sequence):
            def __init__(self, x, y, batch_size, shuffle):
                self.x = x
                self.y = y
                self.batch_size = batch_size
                self.indices = np.arange(len(self.x))
                self.shuffle = shuffle
                assert len(self.x) == len(self.y)
                assert len(self.x) % self.batch_size == 0

            def __getitem__(self, index):
                i = index * self.batch_size
                indices = self.indices[i:i + self.batch_size]
                x = self.x[indices]
                y = self.y[indices]
                return x, y

            def __len__(self):
                return len(self.x) // self.batch_size

            def on_epoch_end(self):
                if self.shuffle:
                    self.indices = np.random.permutation(self.indices)

        model.fit_generator(generator=Generator(train_x, train_y,
                                                args.batch_size, True),
                            validation_data=Generator(test_x, test_y,
                                                      args.batch_size, False),
                            epochs=args.epochs,
                            class_weight='balanced',
                            shuffle=True,
                            verbose=1,
                            callbacks=callbacks)