Exemplo n.º 1
0
    for batch, (train_x, train_y) in enumerate(train_dataset):
        # print(train_x.shape, train_y.shape)
        # assert train_x.shape == (batch_size, n_steps, 1)
        # assert train_y.shape == (batch_size, n_steps)
        # loss
        with tf.GradientTape() as tape:
            y = model(train_x, training=True)
            # assert y.shape == (batch_size, n_steps, 10)
            loss_np = tf.nn.sparse_softmax_cross_entropy_with_logits(
                labels=train_y, logits=y)
            # assert loss_np.shape == (batch_size, n_steps)
            loss = tf.reduce_mean(loss_np)

        # gradient
        gradient = tape.gradient(loss, model.trainable_variables)
        if clip != -1:
            gradient, _ = tf.clip_by_global_norm(gradient, clip)
        optimizer.apply_gradients(zip(gradient, model.trainable_variables))
        if batch % 100 == 0:
            print("Batch:", batch, ", Train loss:", loss.numpy())
    # Eval
    eval_logits = model(test_data, training=False)
    eval_loss_list = tf.nn.sparse_softmax_cross_entropy_with_logits(
        labels=test_labels, logits=eval_logits)
    # assert eval_loss_list.shape == (batch_size, n_steps)
    eval_loss = tf.reduce_mean(eval_loss_list)
    print("Epoch:", epoch, ", Eval loss:", eval_loss.numpy(), "\n---\n")

    # Save
    model.save_weights("weights/model_weight.h5")
Exemplo n.º 2
0
        gradient = tape.gradient(loss, model.trainable_variables)
        if clip != -1:
            gradient, _ = tf.clip_by_global_norm(gradient, clip)
        optimizer.apply_gradients(zip(gradient, model.trainable_variables))
        if batch % 100 == 0:
            print("Batch:", batch, ", Train loss:", loss.numpy())

    # Eval Acc
    eval_labels = model(test_data, training=False)
    eval_acc = np.mean(
        np.argmax(eval_labels.numpy(), axis=1) == test_labels.numpy())
    print("Epoch:", epoch, ", Eval acc:", eval_acc * 100, "%\n---\n")

    # Save
    if not args.permute:
        model.save_weights("Sequential-weights/model_weight.h5")
    else:
        model.save_weights("Permuted-weights/model_weight.h5")

# Eval Acc

# print(test_data.shape, test_labels.shape)
# test_data = test_data[:100, :, :]
# test_labels = test_labels[:100]

# print("Before:")
# eval_labels =  model(test_data, training=False)
# eval_loss = tf.reduce_mean(tf.nn.sparse_softmax_cross_entropy_with_logits(labels=test_labels, logits=eval_labels))
# print("eval_loss:", eval_loss)

# print("\nAfter:")