Exemplo n.º 1
0
    logging.basicConfig(level=getattr(logging, args.logging_level))

    start_time = time.time()
    logging.info("Loading vocab from: {}".format(args.vocab))
    vocab = torch.load(args.vocab)

    logging.info("Counting training lines and labels")
    num_labels, train_num_lines = count(train_data_path)
    logging.info("Counting testing lines and labels")
    num_labels, test_num_lines = count(test_data_path)

    logging.info("Loading iterable datasets")
    train_dataset = Dataset(get_csv_iterator(train_data_path, ngrams, vocab),
                            train_num_lines, num_epochs)
    test_dataset = Dataset(get_csv_iterator(test_data_path, ngrams, vocab),
                           test_num_lines, num_epochs)

    logging.info("Creating models")
    model = TextSentiment(len(vocab), embed_dim, num_labels).to(device)
    criterion = torch.nn.CrossEntropyLoss().to(device)
    logging.info("Setup took: {:3.0f}s".format(time.time() - start_time))

    logging.info("Starting training")
    train(lr, num_epochs, train_dataset)
    test(test_dataset)

    if args.save_model_path:
        print("Saving model to {}".format(args.save_model_path))
        torch.save(model.to('cpu'), args.save_model_path)
Exemplo n.º 2
0
import argparse
import torch

ag_news_label = {1: "World", 2: "Sports", 3: "Business", 4: "Sci/Tec"}
WEIGHT_PATH = "../weights/text_news0.2672930294473966.pth"

vocab = pickle.load(open(".data/save_vocab.p", "rb"))

device = "cuda" if torch.cuda.is_available() else "cpu"
VOCAB_SIZE = 1308844
EMBED_DIM = 32
NUM_CLASS = 4
model = TextSentiment(VOCAB_SIZE, EMBED_DIM, NUM_CLASS)
checkpoint = torch.load(WEIGHT_PATH, map_location=torch.device('cpu'))
model.load_state_dict(checkpoint)
model.to(device)


def predict(text, model, vocab, ngrams):
    tokenizer = get_tokenizer("basic_english")
    with torch.no_grad():
        text = torch.tensor([
            vocab[token] for token in ngrams_iterator(tokenizer(text), ngrams)
        ])
        output = model(text, torch.tensor([0]))
        return output.argmax(1).item() + 1


parser = argparse.ArgumentParser(
    description='Text_classification With Pytorch')
parser.add_argument("--text",