Exemplo n.º 1
0
def get_fen_result(zz):
    all_sen=[]
    data=[]
    sentences = cut_sent(zz)
    for sent in sentences:
        sent = sent.replace("\n", "")
        sent = sent.replace("\t", "")
        sent = sent.replace(" ", "")
        if sent:
            all_sen.append(sent)

    for line in all_sen:
        word_list = [x for x in jieba.cut(line.strip())]
        data.append(word_list)
    if os.path.exists(root_name):
        root = load_model(root_name)
    else:
        dict_name = FLAGS.data_path + 'dict.txt'
        word_freq = load_dictionary(dict_name)
        root = TrieNode('*', word_freq)
        save_model(root, root_name)
    for word_list in data:
        ngrams = generate_ngram(word_list, FLAGS.ngram)
        for d in ngrams:
            root.add(d)
    te_re, add_word = root.find_word(FLAGS.topN, stop_word, jieba_dict, l_zre)
    del  root
    return te_re
Exemplo n.º 2
0
data = []
with open('../data/demo.txt', 'r') as f:
    lines = f.readlines()
    for line in lines:
        line = line.strip()
        line = [x for x in jieba.cut(line, cut_all=False) if x not in stopword]
        data.append(line)

print('------> 初始化字典树')
root = TrieNode('*', word_freq)

print('------> 插入节点')
for i in data:
    tmp = generate_ngram(i, 3)
    for d in tmp:
        root.add(d)

result, add_word = root.wordFind(5)

print('增加了%d个新词, 词语和得分分别为' % len(add_word))
print('#############################')
for word, score in add_word.items():
    print(word + ' ---->  ', score)
print('#############################')

# 如果想要调试和选择其他的阈值,可以print result来调整
# print(result)

test = '蔡英文在昨天应民进党当局的邀请,准备和陈时中一道前往世界卫生大会,和谈有关九二共识问题'
print('添加前:')
print("".join([(x + '/ ') for x in jieba.cut(test, cut_all=False)