Exemplo n.º 1
0
    data_loader = data_selector(data_name, data_arguments)
    print(data_loader)
    data_images, data_labels, data_diff = data_loader.load_data()

    model_name = cgf1['MODEL']['name']
    model_arguments = cgf1['MODEL']['arguments']

    input_shape = data_images.shape[1:]
    output_shape = data_labels.shape[1]

    # Set the default precision
    model_precision = cgf1['MODEL_METADATA']['precision']
    K.set_floatx(model_precision)

    model = mb.model_selector(model_name, input_shape, output_shape,
                              model_arguments)

    keras_weights_path = join(model_path, "keras_model_files.h5")
    model.load_weights(keras_weights_path)

    # Extract training information
    loss_type = cgf1['TRAIN']['loss']['type']
    optimizer = cgf1['TRAIN']['optim']['type']
    batch_size = cgf1['TRAIN']['batch_size']
    metric_list = list(cgf1['TRAIN']['metrics'].values())
    shuffle_data = cgf1['TRAIN']['shuffle']
    max_epoch = cgf1['TRAIN']['max_epoch']
    stpc_type = cgf1['TRAIN']['stopping_criteria']['type']
    print("""\nTRAIN
loss: {}
optimizer: {}
Exemplo n.º 2
0
def random_labeled_data(data_size, randomness, param):
    """	
    We load a trained model and generate a train set either using 
    uniform or a gaussian random matrices

    randomness can be set to : 

        gaussian: Input param has to be [m,stdev] which creates random images
        with a gaussian distribution for each pixel with mean m and standar 
        deviation stdev

        uniform: Input params [a,b] and creates random images with uniform 
        distribution for each pixel

        stripes: creates images for the stripes case

        none: Input parameter a. Creates images with all pixels set to b for 
        all (given some step size a/data_size) values from 0 to a.

    """

    with open('config_files/config_random.yml') as ymlfile:
        cgf = yaml.load(ymlfile, Loader=yaml.SafeLoader)
    n = cgf['DATASET_TRAIN']['arguments']['grid_size']
    input_shape = (n, n, 1)
    output_shape = (1)

    use_gpu = cgf['COMPUTER_SETUP']['use_gpu']
    if use_gpu:
        compute_node = cgf['COMPUTER_SETUP']['compute_node']
        os.environ["CUDA_VISIBLE_DEVICES"] = "%d" % (compute_node)
    else:
        os.environ["CUDA_VISIBLE_DEVICES"] = "-1"
    model_num = cgf['DATASET_TRAIN']['arguments']['model']
    model_name = cgf['MODEL']['name']

    weights_path = "model/" + str(model_num) + "/keras_model_files.h5"
    model = mb.model_selector(model_name, input_shape, output_shape,
                              cgf['MODEL']['arguments'])
    model.load_weights(weights_path)

    optimizer = cgf['TRAIN']['optim']['type']
    loss_type = cgf['TRAIN']['loss']['type']
    metric_list = list(cgf['TRAIN']['metrics'].values())

    model.compile(optimizer=optimizer, loss=loss_type, metrics=metric_list)

    if randomness == "gaussian":
        mean = param[0]
        var = param[1]
        data = np.random.normal(mean, var, size=(data_size, n, n, 1))
    elif randomness == "uniform":
        #data = np.random.uniform(low=0, high=0.1875, size=(data_size, n, n, 1))
        lowb = param[0]
        highb = param[1]
        data = np.random.uniform(low=lowb,
                                 high=highb,
                                 size=(data_size, n, n, 1))

    elif randomness == "stripes":
        data_loader_test = Data_loader_stripe_test(
            cgf['DATASET_TEST']['arguments'])
        data, _ = data_loader_test.load_data()

    elif randomness == "none":
        a = param
        data = np.ones((data_size, n, n, 1))

        for i in range(data_size):
            data[i, :, :, 0] = (a / (i + 1))

    sum_pixels = [i.sum() for i in data[:]]

    labels = model.predict(data)
    return data, labels, sum_pixels