Exemplo n.º 1
0
def ANN_gridpoints(folder_pathmod, epochs=50, numlayers=1, units=[20]):

    if not os.path.exists(folder_pathmod):
        os.makedirs(folder_pathmod)

    transform_method = 'Norm'  #function or text
    n = 13
    #or n = 6, 4
    train_data1, test_data1, train_targets1, test_targets1, feature_names = mergeNGA_cells(
        nametrain=
        '/Users/aklimasewski/Documents/data/cybertrainyeti10_residfeb.csv',
        nametest=
        '/Users/aklimasewski/Documents/data/cybertestyeti10_residfeb.csv',
        filenamenga='/Users/aklimasewski/Documents/data/NGA_mag2_9.csv',
        n=13)

    x_train, y_train, x_test, y_test, x_range, x_train_raw, x_test_raw = transform_data(
        transform_method, train_data1, test_data1, train_targets1,
        test_targets1, feature_names, folder_pathmod)

    resid, resid_test, pre_train, pre_test = create_ANN(
        x_train, y_train, x_test, y_test, feature_names, numlayers, units,
        epochs, transform_method, folder_pathmod)

    period = [10, 7.5, 5, 4, 3, 2, 1, 0.5, 0.2, 0.1]
    plot_resid(resid, resid_test, folder_pathmod)
Exemplo n.º 2
0
def ANN_gridpoints(folder_pathmod, epochs=50, numlayers=1, units=[20]):
    '''
    ANN with cell locations as additional features
    trained and tested with dataset including NGA data

    Parameters
    ----------
    folder_pathmod: path for saving files
    epochs: number of training epochs
    numlayers: integer number of hidden layers
    units: array of number of units for hidden layers

    Returns
    -------
    None.
    creates ANN and saves model files and figures
    '''

    if not os.path.exists(folder_pathmod):
        os.makedirs(folder_pathmod)

    train_data1, test_data1, train_targets1, test_targets1, feature_names = mergeNGAdata_cells(
        nametrain=
        '/Users/aklimasewski/Documents/data/cybertrainyeti10_residfeb.csv',
        nametest=
        '/Users/aklimasewski/Documents/data/cybertestyeti10_residfeb.csv',
        filenamenga='/Users/aklimasewski/Documents/data/NGA_mag2_9.csv',
        n=13)

    x_train, y_train, x_test, y_test, x_range, x_train_raw, x_test_raw = transform_data(
        transform_method, train_data1, test_data1, train_targets1,
        test_targets1, feature_names, folder_pathmod)

    resid, resid_test, pre_train, pre_test = create_ANN(
        x_train, y_train, x_test, y_test, feature_names, numlayers, units,
        epochs, transform_method, folder_pathmod)

    period = [10, 7.5, 5, 4, 3, 2, 1, 0.5, 0.2, 0.1]
    plot_resid(resid, resid_test, folder_pathmod)
Exemplo n.º 3
0
test_data1 = np.concatenate([test_data1, ngatest], axis=0)
train_targets1 = np.concatenate([train_targets1, ngatrain_targets], axis=0)
test_targets1 = np.concatenate([test_targets1, ngatest_targets], axis=0)

# transform data
x_train, y_train, x_test, y_test, x_range, x_train_raw, x_test_raw = transform_data(
    transform_method, train_data1, test_data1, train_targets1, test_targets1,
    feature_names, folder_path)

# build and train the ANN
resid_train, resid_test, pre_train, pre_test = create_ANN(
    x_train, y_train, x_test, y_test, feature_names, numlayers, units, epochs,
    transform_method, folder_path)

period = [10, 7.5, 5, 4, 3, 2, 1, 0.5, 0.2, 0.1]
plot_resid(resid_train, resid_test, folder_path)

mean_x_test_allT = pre_test
mean_x_train_allT = pre_train
predict_epistemic_allT = []
predict_epistemic_train_allT = []

Rindex = np.where(feature_names == 'Rrup')[0][0]

# comment out
plot_outputs(folder_path, mean_x_test_allT, predict_epistemic_allT,
             mean_x_train_allT, predict_epistemic_train_allT, x_train, y_train,
             x_test, y_test, Rindex, period, feature_names)
plot_rawinputs(x_raw=x_train_raw,
               mean_x_allT=mean_x_train_allT,
               y=y_train,
def ANN_2step(folder_pathmod1,
              folder_pathmod2,
              epochs1=50,
              epochs2=50,
              numlayers1=1,
              numlayers2=1,
              units1=[20],
              units2=[20]):
    '''
    2 ANNs: 1st is the base ANN, 2nd ANN uses 1st model residuals as targets and cell location features

    Parameters
    ----------
    folder_pathmod1: path for saving png files for the first ANN
    folder_pathmod2: path for saving png files for the second ANN
    epochs1: number of training epochs for the first ANN
    epochs2: number of training epochs for the second ANN
    numlayers1: integer number of hidden layers for the first ANN
    numlayers2: integer number of hidden layers for the second ANN
    units1: array of number of units for hidden layers for first ANN
    units2: array of number of units for hidden layers for second ANN

    Returns
    -------
    None.
    creates two ANNS and saves model files and figures
    '''
    from sklearn.preprocessing import PowerTransformer

    if not os.path.exists(folder_pathmod1):
        os.makedirs(folder_pathmod1)

    # read in training, testing, and cell data
    train_data1, test_data1, train_targets1, test_targets1, feature_names = readindata(
        nametrain=
        '/Users/aklimasewski/Documents/data/cybertrainyeti10_residfeb.csv',
        nametest=
        '/Users/aklimasewski/Documents/data/cybertestyeti10_residfeb.csv',
        n=n)
    train_data1, test_data1, feature_names = add_az(train_data1, test_data1,
                                                    feature_names)

    cells = pd.read_csv(folder_path + 'gridpointslatlon_train.csv',
                        header=0,
                        index_col=0)
    cells_test = pd.read_csv(folder_path + 'gridpointslatlon_test.csv',
                             header=0,
                             index_col=0)

    x_train, y_train, x_test, y_test, x_range, x_train_raw, x_test_raw = transform_data(
        transform_method, train_data1, test_data1, train_targets1,
        test_targets1, feature_names, folder_pathmod1)

    resid, resid_test, pre_train, pre_test = create_ANN(
        x_train, y_train, x_test, y_test, feature_names, numlayers1, units1,
        epochs1, transform_method, folder_pathmod1)

    period = [10, 7.5, 5, 4, 3, 2, 1, 0.5, 0.2, 0.1]
    plot_resid(resid, resid_test, folder_pathmod1)

    # second ANN
    if not os.path.exists(folder_pathmod2):
        os.makedirs(folder_pathmod2)

    train_targets1 = resid
    test_targets1 = resid_test

    train_data1 = np.asarray(cells)
    test_data1 = np.asarray(cells_test)

    transform_method = PowerTransformer()
    feature_names = np.asarray([
        'eventlat',
        'eventlon',
        'midlat',
        'midlon',
        'sitelat',
        'sitelon',
    ])

    x_train, y_train, x_test, y_test, x_range, x_train_raw, x_test_raw = transform_data(
        transform_method, train_data1, test_data1, train_targets1,
        test_targets1, feature_names, folder_pathmod2)

    resid, resid_test, pre_train, pre_test = create_ANN(
        x_train, y_train, x_test, y_test, feature_names, numlayers2, units2,
        epochs2, transform_method, folder_pathmod2)

    period = [10, 7.5, 5, 4, 3, 2, 1, 0.5, 0.2, 0.1]
    plot_resid(resid, resid_test, folder_pathmod2)
def ANN_gridpoints(folder_pathmod, epochs=50, numlayers=1, units=[20]):
    '''
    ANN with cell locations as additional features

    Parameters
    ----------
    folder_pathmod: path for saving png files
    epochs: number of training epochs
    numlayers: integer number of hidden layers
    units: array of number of units for hidden layers

    Returns
    -------
    None.
    creates ANNS and saves model files and figures
    '''

    cells = pd.read_csv(folder_path + 'gridpointslatlon_train.csv',
                        header=0,
                        index_col=0)
    cells_test = pd.read_csv(folder_path + 'gridpointslatlon_test.csv',
                             header=0,
                             index_col=0)

    if not os.path.exists(folder_pathmod):
        os.makedirs(folder_pathmod1)

    transform_method = 'Norm'  #function or text
    n = 13

    train_data1, test_data1, train_targets1, test_targets1, feature_names = readindata(
        nametrain=
        '/Users/aklimasewski/Documents/data/cybertrainyeti10_residfeb.csv',
        nametest=
        '/Users/aklimasewski/Documents/data/cybertestyeti10_residfeb.csv',
        n=n)
    train_data1, test_data1, feature_names = add_az(train_data1, test_data1,
                                                    feature_names)

    # add the cell features
    train_data1 = np.concatenate([train_data1, cells], axis=1)
    test_data1 = np.concatenate([test_data1, cells_test], axis=1)
    feature_names = np.concatenate([
        feature_names,
        [
            'eventlat',
            'eventlon',
            'midlat',
            'midlon',
            'sitelat',
            'sitelon',
        ]
    ],
                                   axis=0)

    x_train, y_train, x_test, y_test, x_range, x_train_raw, x_test_raw = transform_data(
        transform_method, train_data1, test_data1, train_targets1,
        test_targets1, feature_names, folder_pathmod)

    resid, resid_test, pre_train, pre_test = create_ANN(
        x_train, y_train, x_test, y_test, feature_names, numlayers, units,
        epochs, transform_method, folder_pathmod)

    plot_resid(resid, resid_test, folder_pathmod1)
Exemplo n.º 6
0
    n=12)
train_data1 = np.append(train_data1, path_target_sum, axis=1)
test_data1 = np.append(test_data1, path_target_sum_test, axis=1)
feature_names = np.append(
    feature_names,
    ['T10', 'T7.5', 'T5', 'T4', 'T3', 'T2', 'T1', 'T0.5', 'T0.2', 'T0.1'],
    axis=0)

transform_method = 'Norm'
x_train, y_train, x_test, y_test, x_range, x_train_raw, x_test_raw = transform_data(
    transform_method, train_data1, test_data1, train_targets1, test_targets1,
    feature_names, folder_path)

numlayers = 1
units = [50]
resid, resid_test, pre_train, pre_test = create_ANN(x_train, y_train, x_test,
                                                    y_test, feature_names,
                                                    numlayers, units, epochs,
                                                    transform_method,
                                                    folder_pathmod)

period = [10, 7.5, 5, 4, 3, 2, 1, 0.5, 0.2, 0.1]
plot_resid(resid, resid_test, folder_pathmod)

Rindex = np.where(feature_names == 'Rrup')[0][0]
predict_epistemic_allT = []
predict_epistemic_train_allT = []
plot_outputs(folder_path, pre_test, predict_epistemic_allT, pre_Train,
             predict_epistemic_train_allT, x_train, y_train, x_test, y_test,
             Rindex, period, feature_names)