Exemplo n.º 1
0
 def run_svm_on_validation_set_and_pick_the_best(self, models_dir,
                                                 validation_file,
                                                 score_directory,
                                                 scores_in_trec_format_path,
                                                 qrel_path):
     models_dirs = os.walk(models_dir)
     evaluation = evaluator.evaluator()
     evaluation.prepare_index_of_test_file(validation_file)
     for models_dir in models_dirs:
         if not models_dir[1]:
             for model in models_dir[2]:
                 model_file = models_dir[0] + "/" + model
                 self.run_model_svm(model_file, validation_file,
                                    score_directory)
     for scores_dir_data in os.walk(score_directory):
         if not scores_dir_data[1]:  # no subdirectories
             for scores_file_name in scores_dir_data[2]:
                 scores_file = scores_dir_data[0] + "/" + scores_file_name
                 evaluation.create_file_in_trec_eval_format(
                     scores_file, scores_in_trec_format_path, '')
     for final_score_dir in os.walk(scores_in_trec_format_path):
         if not final_score_dir[1]:
             evaluation.run_trec_eval_on_evaluation_set(
                 final_score_dir[0], qrel_path)
             fold = os.path.basename(final_score_dir[0])
             self.chosen_models[fold] = evaluation.chosen_model
Exemplo n.º 2
0
 def sort_and_evaluate_final_file(self, final_file_name, qrel_path):
     final_file_as_txt = final_file_name.replace("tmp", "txt")
     command = "sort -k1,1 -k5nr " + final_file_name + " > " + final_file_as_txt
     for output_line in self.run_command(command):
         print(output_line)
     evaluation = evaluator.evaluator()
     evaluation.run_trec_eval_on_test_file(qrel_path, final_file_as_txt)
Exemplo n.º 3
0
 def run_svm_on_test_set(self, fold, models_path, test_file, score_dir,
                         final_score_directory, qrel_path):
     key = fold
     print(self.chosen_models.keys())
     sys.stdout.flush()
     model_file_name = models_path + "/" + self.chosen_models[key]
     score_file = self.run_model_svm(model_file_name, test_file, score_dir)
     evaluation = evaluator.evaluator()
     evaluation.prepare_index_of_test_file(test_file)
     final_score_trec_file = evaluation.create_file_in_trec_eval_format(
         score_file, final_score_directory, '')
     return final_score_trec_file
Exemplo n.º 4
0
 def run_chosen_model_on_test_lambda_mart(self, fold, models_path,
                                          test_file, score_dir,
                                          final_score_directory, qrel_path):
     key = fold
     model_file_name = models_path + "/" + self.chosen_models[key]
     score_file = self.run_model_lmbda_mart(model_file_name, test_file,
                                            score_dir)
     evaluation = evaluator.evaluator()
     evaluation.prepare_index_of_test_file(test_file)
     final_score_trec_file = evaluation.create_file_in_trec_eval_format(
         score_file, final_score_directory, 'RANKLIB')
     return final_score_trec_file