Exemplo n.º 1
0
 def test_tpu(self):
     # Force graph mode
     with tf.compat.v1.Graph().as_default():
         learning_rate_spec = {
             'learning_rate': 0.001,
             'gradient_max_norm': 3
         }
         spec = phoenix_spec_pb2.PhoenixSpec(
             problem_type=phoenix_spec_pb2.PhoenixSpec.DNN)
         task_manager_instance = task_manager.TaskManager(spec)
         logits = tf.keras.layers.Dense(10)(tf.zeros([20, 10]))
         logits_spec = architecture_utils.LogitsSpec(logits=logits)
         features = {'x': tf.zeros([10, 10])}
         loss_fn = loss_fns.make_multi_class_loss_fn()
         _ = task_manager_instance.create_model_spec(
             features=features,
             params=hp.HParams(optimizer='sgd'),
             learning_rate_spec=learning_rate_spec,
             train_logits_specs=[logits_spec],
             eval_logits_spec=logits_spec,
             labels=tf.ones([20], dtype=tf.int32),
             loss_fn=loss_fn,
             mode=tf.estimator.ModeKeys.TRAIN,
             lengths=None,
             use_tpu=True,
             predictions_fn=_default_predictions_fn)
         self.assertNotEmpty([
             node.name for node in
             tf.compat.v1.get_default_graph().as_graph_def().node
             if 'CrossReplicaSum' in node.name
         ])
Exemplo n.º 2
0
 def test_learning_spec_on_predict(self, learning_rate_spec,
                                   not_containing):
     spec = phoenix_spec_pb2.PhoenixSpec(
         problem_type=phoenix_spec_pb2.PhoenixSpec.DNN)
     task_manager_instance = task_manager.TaskManager(spec)
     logits = tf.keras.layers.Dense(10)(tf.zeros([20, 10]))
     logits_spec = architecture_utils.LogitsSpec(logits=logits)
     features = {'x': tf.zeros([10, 10])}
     loss_fn = loss_fns.make_multi_class_loss_fn()
     model = task_manager_instance.create_model_spec(
         features=features,
         params=hp.HParams(optimizer='sgd'),
         learning_rate_spec=learning_rate_spec,
         train_logits_specs=[logits_spec],
         eval_logits_spec=logits_spec,
         labels=tf.ones([20], dtype=tf.int32),
         loss_fn=loss_fn,
         mode=tf.estimator.ModeKeys.PREDICT,
         lengths=None,
         use_tpu=False,
         predictions_fn=_default_predictions_fn)
     for phrase in not_containing:
         self.assertEmpty([
             node.name for node in
             tf.compat.v1.get_default_graph().as_graph_def().node
             if phrase in node.name
         ])
     self.assertLen(model.predictions, 3)
     self.assertIn('probabilities', model.predictions)
     self.assertIn('log_probabilities', model.predictions)
     self.assertIn('predictions', model.predictions)
     self.assertIsNone(model.loss)
Exemplo n.º 3
0
 def test_architecture(self):
   # Force graph mode
   with tf.compat.v1.Graph().as_default():
     learning_rate_spec = {'learning_rate': 0.001, 'gradient_max_norm': 3}
     spec = phoenix_spec_pb2.PhoenixSpec(
         problem_type=phoenix_spec_pb2.PhoenixSpec.CNN)
     text_format.Merge(
         """
         multi_task_spec {
           label_name: "label1"
           number_of_classes: 10
           architecture: "FIXED_OUTPUT_FULLY_CONNECTED_128"
         }
         multi_task_spec {
           label_name: "label2"
           number_of_classes: 10
           architecture: "FIXED_OUTPUT_FULLY_CONNECTED_256"
           architecture: "FIXED_OUTPUT_FULLY_CONNECTED_512"
         }
     """, spec)
     task_manager_instance = task_manager.TaskManager(spec)
     logits = tf.keras.layers.Dense(10)(tf.zeros([20, 10]))
     logits_spec = architecture_utils.LogitsSpec(logits=logits)
     features = {'x': tf.zeros([10, 10])}
     loss_fn = loss_fns.make_multi_class_loss_fn()
     model = task_manager_instance.create_model_spec(
         features=features,
         params=hp.HParams(optimizer='sgd'),
         learning_rate_spec=learning_rate_spec,
         train_logits_specs=[logits_spec],
         eval_logits_spec=logits_spec,
         labels={
             'label1': tf.ones([20], dtype=tf.int32),
             'label2': tf.ones([20], dtype=tf.int32)
         },
         loss_fn=loss_fn,
         model_directory=self.get_temp_dir(),
         mode=tf.estimator.ModeKeys.TRAIN,
         lengths=None,
         use_tpu=False,
         predictions_fn=_default_predictions_fn)
     self.assertNotEmpty([
         node.name
         for node in tf.compat.v1.get_default_graph().as_graph_def().node
         if 'task_label1_tower/1_FIXED_OUTPUT_FULLY_CONNECTED_128' in node.name
     ])
     self.assertNotEmpty([
         node.name
         for node in tf.compat.v1.get_default_graph().as_graph_def().node
         if 'task_label2_tower/1_FIXED_OUTPUT_FULLY_CONNECTED_256' in node.name
     ])
     self.assertNotEmpty([
         node.name
         for node in tf.compat.v1.get_default_graph().as_graph_def().node
         if 'task_label2_tower/2_FIXED_OUTPUT_FULLY_CONNECTED_512' in node.name
     ])
     self.assertLen(model.predictions, 3 * (1 + 2))
     self.assertIn('probabilities', model.predictions)
     self.assertIn('log_probabilities', model.predictions)
     self.assertIn('predictions', model.predictions)
Exemplo n.º 4
0
    def test_weight_feature(self, is_multitask, weight_is_a_feature):
        # Force graph mode
        with tf.compat.v1.Graph().as_default():
            learning_rate_spec = {
                'learning_rate': 0.001,
                'gradient_max_norm': 3
            }
            spec = phoenix_spec_pb2.PhoenixSpec(
                problem_type=phoenix_spec_pb2.PhoenixSpec.DNN)
            labels = tf.ones([20], dtype=tf.int32)
            if is_multitask:
                text_format.Merge(
                    """
            multi_task_spec {
              label_name: "label1"
              number_of_classes: 10
              weight_feature_name: "weight1"
              weight_is_a_feature: %s
            }
            multi_task_spec {
              label_name: "label2"
              number_of_classes: 10
              weight_feature_name: "weight2"
              weight_is_a_feature: %s
            }
        """ % (str(weight_is_a_feature), str(weight_is_a_feature)), spec)
                labels = {
                    'label1': tf.ones([20], dtype=tf.int32),
                    'label2': tf.ones([20], dtype=tf.int32)
                }

            weights = {
                'weight1': tf.constant([2] * 20),
                'weight2': tf.constant([3] * 20)
            }
            features = {'x': tf.zeros([10, 10])}
            if weight_is_a_feature:
                features.update(weights)
            elif isinstance(labels, dict):
                labels.update(weights)
            task_manager_instance = task_manager.TaskManager(spec)
            logits = tf.keras.layers.Dense(10)(tf.zeros([20, 10]))
            logits_spec = architecture_utils.LogitsSpec(logits=logits)
            loss_fn = loss_fns.make_multi_class_loss_fn()

            _ = task_manager_instance.create_model_spec(
                features=features,
                params=hp.HParams(optimizer='sgd'),
                learning_rate_spec=learning_rate_spec,
                train_logits_specs=[logits_spec],
                eval_logits_spec=logits_spec,
                labels=labels,
                loss_fn=loss_fn,
                mode=tf.estimator.ModeKeys.TRAIN,
                lengths=None,
                use_tpu=False,
                predictions_fn=_default_predictions_fn)
Exemplo n.º 5
0
  def test_wrong_dict_weight_feature(self, weight_is_a_feature):
    learning_rate_spec = {'learning_rate': 0.001, 'gradient_max_norm': 3}
    spec = phoenix_spec_pb2.PhoenixSpec(
        problem_type=phoenix_spec_pb2.PhoenixSpec.DNN)
    text_format.Merge(
        """
        multi_task_spec {
          label_name: "label1"
          number_of_classes: 10
          weight_feature_name: "weight1"
          weight_is_a_feature: %s
        }
        multi_task_spec {
          label_name: "label2"
          number_of_classes: 10
          weight_feature_name: "weight2"
          weight_is_a_feature: %s
        }
    """ % (str(weight_is_a_feature), str(weight_is_a_feature)), spec)
    labels = {
        'label1': tf.ones([20], dtype=tf.int32),
        'label2': tf.ones([20], dtype=tf.int32),
    }
    # Fix the size of the dict labels to bypass the assertion.
    if not weight_is_a_feature:
      labels.update({
          'not_used': tf.ones([20], dtype=tf.int32),
          'not_used2': tf.ones([20], dtype=tf.int32)
      })

    weights = {
        'weight1': tf.constant([2] * 20),
        'weight2': tf.constant([3] * 20)
    }
    features = {'x': tf.zeros([10, 10])}
    if not weight_is_a_feature:
      features.update(weights)
    task_manager_instance = task_manager.TaskManager(spec)
    logits = tf.keras.layers.Dense(10)(tf.zeros([20, 10]))
    logits_spec = architecture_utils.LogitsSpec(logits=logits)

    with self.assertRaises(KeyError):
      loss_fn = loss_fns.make_multi_class_loss_fn()

      _ = task_manager_instance.create_model_spec(
          features=features,
          params=hp.HParams(optimizer='sgd'),
          learning_rate_spec=learning_rate_spec,
          train_logits_specs=[logits_spec],
          eval_logits_spec=logits_spec,
          labels=labels,
          loss_fn=loss_fn,
          model_directory=self.get_temp_dir(),
          mode=tf.estimator.ModeKeys.TRAIN,
          lengths=None,
          use_tpu=False,
          predictions_fn=_default_predictions_fn)
Exemplo n.º 6
0
    def test_multitask(self, learning_rate_spec, contains_node,
                       not_containing):
        # Force graph mode
        with tf.compat.v1.Graph().as_default():
            spec = phoenix_spec_pb2.PhoenixSpec(
                problem_type=phoenix_spec_pb2.PhoenixSpec.DNN)
            text_format.Merge(
                """
          multi_task_spec {
            label_name: "label1"
            number_of_classes: 10
          }

          multi_task_spec {
            label_name: "label2"
            number_of_classes: 10
          }
      """, spec)
            task_manager_instance = task_manager.TaskManager(spec)
            logits = tf.keras.layers.Dense(10)(tf.zeros([20, 10]))
            logits_spec = architecture_utils.LogitsSpec(logits=logits)
            features = {'x': tf.zeros([10, 10])}
            loss_fn = loss_fns.make_multi_class_loss_fn()
            model = task_manager_instance.create_model_spec(
                features=features,
                params=hp.HParams(optimizer='sgd'),
                learning_rate_spec=learning_rate_spec,
                train_logits_specs=[logits_spec],
                eval_logits_spec=logits_spec,
                labels={
                    'label1': tf.ones([20], dtype=tf.int32),
                    'label2': tf.ones([20], dtype=tf.int32)
                },
                loss_fn=loss_fn,
                mode=tf.estimator.ModeKeys.TRAIN,
                lengths=None,
                use_tpu=False,
                predictions_fn=_default_predictions_fn)
            self.assertNotEmpty([
                node.name for node in
                tf.compat.v1.get_default_graph().as_graph_def().node
                if contains_node in node.name
            ])
            for phrase in not_containing:
                self.assertEmpty([
                    node.name for node in
                    tf.compat.v1.get_default_graph().as_graph_def().node
                    if phrase in node.name
                ])
            self.assertLen(model.predictions, 3 * (1 + 2))
            self.assertContainsSubset([
                'probabilities',
                'probabilities/label1',
                'probabilities/label2',
                'log_probabilities',
                'log_probabilities/label1',
                'log_probabilities/label2',
                'predictions',
                'predictions/label1',
                'predictions/label2',
            ], model.predictions.keys())
Exemplo n.º 7
0
  def __init__(self,
               phoenix_spec,
               input_layer_fn,
               study_owner,
               study_name,
               head=None,
               logits_dimension=None,
               label_vocabulary=None,
               loss_fn=None,
               metric_fn=None,
               predictions_fn=None,
               metadata=None):
    """Constructs a Phoenix instance.

    Args:
      phoenix_spec: A `PhoenixSpec` proto with the spec for the run.
      input_layer_fn: A function that converts feature Tensors to input layer.
        See learning.autolx.model_search.data.Provider.get_input_layer_fn
        for details.
      study_owner: A string holding the ldap of the study owner. We use tuner
        platforms to conduct the various architectures training. This field
        specifies the study owner.
      study_name: A string holding the study name.
      head: A head to use with Phoenix for creating the loss and eval metrics.
        If no head is given, Phoenix falls back to using the loss_fn and
        metric_fn. N.B.: Phoenix creates its own EstimatorSpec so everything
          besides the loss and eval metrics returned by head will be ignored.
      logits_dimension: An int holding the dimension of the output. Must be
        provided if head is None. Will be ignored if head is not None.
      label_vocabulary: List or tuple with labels vocabulary. Needed only if the
        labels are of type string. This list is used by the loss function if
        loss_fn is not provided. It is also used in the metric function to
        create the accuracy metric ops. Use only with multiclass classification
        problems.
      loss_fn: A function to compute the loss. Ignored if `head` is not None.
        Must accept as inputs a `labels` Tensor, a `logits` Tensor, and
        optionally a `weights` Tensor. `weights` must either be rank 0 or have
        the same rank as labels. If None, Phoenix defaults to using softmax
        cross-entropy.
      metric_fn: Metrics for Tensorboard. Ignored if `head` is not None.
        metric_fn takes `label` and `predictions` as input, and outputs a
        dictionary of (tensor, update_op) tuples. `label` is a Tensor (in the
        single task case) or a dict of Tensors (in the case of multi-task, where
        the key of the dicts correspond to the task names). `predictions` is a
        dict of Tensors. In the single task case, it consists of `predictions`,
        `probabilities`, and `log_probabilities`. In the multi-task case, it
        consists of the same keys as that of the single task case, but also
        those corresponding to each task (e.g., predictions/task_name_1). See
        `metric_fns` for more detail. If `metric_fn` is None, it will include a
        metric for the number of parameters, accuracy (if logit_dimensions >=
        2), and AUC metrics (if logit_dimensions == 2).
      predictions_fn: A function to convert eval logits to the
        `predictions` dictionary passed to metric_fn. If `None`, defaults to
        computing 'predictions', 'probabilities', and 'log_probabilities'.
      metadata: An object that implements metadata api in
        learning.adanets.phoenix.metadata.Metadata
    """

    # Check Phoenix preconditions and fail early if any of them are broken.
    if phoenix_spec.multi_task_spec:
      # TODO(b/172564129): Add support for head and custom loss_fns in
      # multi-task.
      assert not head, "head is not supported for multi-task."
    if head:
      msg = "Do not specify {} when using head as head already contains it."
      assert not logits_dimension, msg.format("logits_dimension")
      assert not label_vocabulary, msg.format("label_vocabulary")
      assert not loss_fn, msg.format("loss_fn")
      assert not metric_fn, msg.format("metric_fn")

    # Check ensemble search / distillation preconditions.
    ensemble_spec = phoenix_spec.ensemble_spec
    distillation_spec = phoenix_spec.distillation_spec
    if trial_utils.has_distillation(
        distillation_spec) and trial_utils.has_ensemble_search(
            ensemble_spec
        ) and not trial_utils.is_intermixed_ensemble_search(ensemble_spec):
      ensemble_search_spec = (
          ensemble_spec.nonadaptive_search
          if trial_utils.is_nonadaptive_ensemble_search(ensemble_spec) else
          ensemble_spec.adaptive_search)
      if (distillation_spec.minimal_pool_size ==
          ensemble_search_spec.minimal_pool_size):
        logging.warning("minimal_pool_size is the same for ensemble spec and "
                        "distillation spec, so distillation will be ignored.")

    self._phoenix_spec = phoenix_spec
    self._input_layer_fn = input_layer_fn
    self._ensembler = ensembler.Ensembler(phoenix_spec)
    self._distiller = distillation.Distiller(phoenix_spec.distillation_spec)
    self._study_owner = study_owner
    self._study_name = study_name
    self._head = head
    self._logits_dimension = (
        self._head.logits_dimension if head else logits_dimension)
    self._label_vocabulary = label_vocabulary
    if self._label_vocabulary:
      assert self._logits_dimension == len(self._label_vocabulary)

    self._loss_fn = loss_fn or loss_fns.make_multi_class_loss_fn(
        label_vocabulary=label_vocabulary)

    self._user_specified_metric_fn = metric_fn

    self._predictions_fn = (predictions_fn or _default_predictions_fn)

    if metadata is None:
      self._metadata = ml_metadata_db.MLMetaData(phoenix_spec, study_name,
                                                 study_owner)
    else:
      self._metadata = metadata
    self._task_manager = task_manager.TaskManager(phoenix_spec)
    self._controller = controller.InProcessController(
        phoenix_spec=phoenix_spec, metadata=self._metadata)