Exemplo n.º 1
0
def cleanup_data(opt):
    now = time.time()
    keep_time = int(opt['keep_time'])
    while lock(opt, 'data_all'):
        pass
    train_data_files = get_train_data_files(opt)
    if len(train_data_files) == 0:
        unlock(opt, 'data_all')
        return
    files_to_erase = list(
        filter(lambda x: float(x[10:]) < now - 60 * keep_time,
               train_data_files))
    for f in files_to_erase:
        subprocess.getoutput('rm {}/data/{}'.format(opt['save_dir'], f))
        subprocess.getoutput('rm {}/data/timestamp_{}'.format(
            opt['save_dir'], f))
    unlock(opt, 'data_all')
    print('[controller] erased {}/{} old training data'.format(
        len(files_to_erase), len(train_data_files)),
          flush=True)
Exemplo n.º 2
0
import sys
import os
import time
import glob
from model_updater import gen_graph, has_best, lock, unlock

from lib.lib import IndependentSetLib

if __name__ == '__main__':
    api = IndependentSetLib(sys.argv)

    opt = {}
    for i in range(1, len(sys.argv), 2):
        opt[sys.argv[i][1:]] = sys.argv[i + 1]

    save_dir = opt['save_dir']
    if has_best(opt):
        while lock(opt, 'best'):
            pass
        api.LoadModel('best')
        unlock(opt, 'best')
    else:
        print('[generator] best model not found', flush=True)

    api.SetCurrentGraph(gen_graph(opt))
    filename = 'train_data{}'.format(time.time())
    api.GenerateTrainData(filename)
    os.system('touch {}/data/timestamp_{}'.format(save_dir, filename))
    print('[generator] generated new data', flush=True)
Exemplo n.º 3
0
from lib.lib import IndependentSetLib


if __name__ == '__main__':
    api = IndependentSetLib(sys.argv)

    opt = {}
    for i in range(1, len(sys.argv), 2):
        opt[sys.argv[i][1:]] = sys.argv[i + 1]

    save_dir = opt['save_dir']
    if has_best(opt):
        while lock(opt, 'best'):
            pass
        api.LoadModel('best')
        unlock(opt, 'best')
    else:
        print('[learner] best model not found', flush=True)

    for _ in range(int(opt['save_interval'])):
        api.ClearTrainData()

        train_data_files = []
        while 1:
            while lock(opt, 'data_all'):
                pass
            train_data_files = get_train_data_files(opt)
            if len(train_data_files) < int(opt['batch_num']):
                unlock(opt, 'data_all')
                print('[learner] training data not found', flush=True)
                time.sleep(np.random.randint(30, 120))