Exemplo n.º 1
0
    def generateAdv(self, num_steps, epsilon, alpha):
        device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
        if (torch.cuda.get_device_capability(0) < (5, 0)):
            device = torch.device("cpu")
        model = modelcnn.Net()
        model.loadModel(pretrained_model="saved_model_state_CNN_final.pth")
        adv = AdvGenerator()
        model = model.to(device)
        testloader = adv.loadData()
        for target_label in adv.labels[:4]:
            for data in testloader:
                image, labels = data
                image, labels = image.to(device), labels.to(device)
                image.requires_grad = True
                output = model.forward(image)

                adv.createIterativeAdversarial(image, target_label.item(),
                                               output, epsilon, alpha,
                                               num_steps, model)

        adv.moveUsedImage()
Exemplo n.º 2
0
            for data in testloader:
                image, labels = data
                image, labels = image.to(device), labels.to(device)
                image.requires_grad = True
                output = model.forward(image)

                adv.createIterativeAdversarial(image, target_label.item(),
                                               output, epsilon, alpha,
                                               num_steps, model)

        adv.moveUsedImage()


if __name__ == "__main__":

    model = modelcnn.Net()
    model.loadModel(pretrained_model="saved_model_state_CNN_final.pth")
    adv = AdvGenerator()
    device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

    model = model.to(device)

    testloader = adv.loadData()
    for target_label in adv.labels[:4]:
        for data in testloader:
            image, labels = data
            image, labels = image.to(device), labels.to(device)
            image.requires_grad = True
            output = model.forward(image)

            adv.createIterativeAdversarial(image, target_label.item(), output,