Exemplo n.º 1
0
    parser.add_argument(
        "--coco",
        help="Do test on COCOPersons val set",
        action="store_true",
    )
    parser.add_argument(
        "--benchmark",
        help="Do fps test without warpaffine",
        action="store_true",
    )
    parser.add_argument(
        "--OCHuman",
        help="Do test on OCHuman val&test set",
        action="store_true",
    )

    args = parser.parse_args()
    jt.flags.use_cuda = 1

    print('===========> loading model <===========')
    model = Pose2Seg()
    model.init(args.weights)
    model.benchmark = args.benchmark

    print('===========>   testing    <===========')
    if args.coco:
        test(model, dataset='cocoVal', benchmark=args.benchmark)
    if args.OCHuman:
        test(model, dataset='OCHumanVal', benchmark=args.benchmark)
        test(model, dataset='OCHumanTest', benchmark=args.benchmark)
Exemplo n.º 2
0
        cocoEval.evaluate()
        cocoEval.accumulate()
        cocoEval.summarize() 
        return cocoEval
    
    cocoEval = do_eval_coco(imgIds, datainfos.COCO, results_segm, 'segm')
    logger('[POSE2SEG]          AP|.5|.75| S| M| L|    AR|.5|.75| S| M| L|')
    _str = '[segm_score] %s '%dataset
    for value in cocoEval.stats.tolist():
        _str += '%.3f '%value
    logger(_str)
    
if __name__=='__main__':
    model_path = './pose2seg_release.pkl'
    print('===========> loading model <===========')
    model = Pose2Seg().cuda()
    model.init(model_path)
    model.eval()  
    ImageRoot = './data/images'
    AnnoFile = './data/person_keypoints_val2017_pose2seg.json'
    datainfos = CocoDatasetInfo(ImageRoot, AnnoFile, onlyperson=True, loadimg=True)
    
    model.eval()
    
    results_segm = []
    imgIds = []
    for i in tqdm(range(len(datainfos))):
        rawdata = datainfos[i]
        g1 = np.float32(rawdata['gt_keypoints'])    
        g2 = np.float32(rawdata['gt_keypoints']).transpose(0, 2, 1)
Exemplo n.º 3
0
        cur_canvas = canvas.copy()
        cv2.fillConvexPoly(cur_canvas, polygon, colors[idx % len(colors)])
        canvas = cv2.addWeighted(canvas, 0.4, cur_canvas, 0.6, 0)

    return canvas


# Namespace(OCHuman=True, coco=True, weights='last.pkl')
cfg = AttrDict()
cfg.OCHuman = True
cfg.coco = True
cfg.weights = '/nethome/hkwon64/Research/imuTube/repos_v2/human_parsing/Pose2Seg/log/pose2seg_release.pkl'

device = torch.device('cuda', 1)

model = Pose2Seg(device).to(device)
model.init(cfg.weights)

model.eval()

dir_save = '/nethome/hkwon64/Research/imuTube/repos_v2/human_parsing/Pose2Seg/demo'

file_im = dir_save + '/demo.jpg'
file_ap = dir_save + '/alphapose-results.json'
ap_result = json.load(open(file_ap, 'r'))
gt_bbox = []
gt_kpts = []
for result in ap_result:
    x1, y1, w, h = result['box']
    bbox = int(x1), int(y1), int(x1 + w), int(y1 + h)
    gt_bbox.append(bbox)