Exemplo n.º 1
0
def _add_roi_keypoint_head(
    model, add_roi_keypoint_head_func, blob_in, dim_in, spatial_scale_in
):
    """Add a keypoint prediction head to the model."""
    # Capture model graph before adding the mask head
    bbox_net = copy.deepcopy(model.net.Proto())
    # Add the keypoint head
    blob_keypoint_head, dim_keypoint_head = add_roi_keypoint_head_func(
        model, blob_in, dim_in, spatial_scale_in
    )
    # Add the keypoint output
    blob_keypoint = keypoint_rcnn_heads.add_keypoint_outputs(
        model, blob_keypoint_head, dim_keypoint_head
    )

    if not model.train:  # == inference
        # Inference uses a cascade of box predictions, then keypoint predictions
        # This requires separate nets for box and keypoint prediction.
        # So we extract the keypoint prediction net, store it as its own
        # network, then restore model.net to be the bbox-only network
        model.keypoint_net, keypoint_blob_out = c2_utils.SuffixNet(
            'keypoint_net', model.net, len(bbox_net.op), blob_keypoint
        )
        model.net._net = bbox_net
        loss_gradients = None
    else:
        loss_gradients = keypoint_rcnn_heads.add_keypoint_losses(model)
    return loss_gradients
Exemplo n.º 2
0
def _add_roi_keypoint_head(
    model, add_roi_keypoint_head_func, blob_in, dim_in, spatial_scale_in
):
    """Add a keypoint prediction head to the model."""
    # Capture model graph before adding the mask head
    bbox_net = copy.deepcopy(model.net.Proto())
    # Add the keypoint head
    blob_keypoint_head, dim_keypoint_head = add_roi_keypoint_head_func(
        model, blob_in, dim_in, spatial_scale_in
    )
    # Add the keypoint output
    blob_keypoint = keypoint_rcnn_heads.add_keypoint_outputs(
        model, blob_keypoint_head, dim_keypoint_head
    )

    if not model.train:  # == inference
        # Inference uses a cascade of box predictions, then keypoint predictions
        # This requires separate nets for box and keypoint prediction.
        # So we extract the keypoint prediction net, store it as its own
        # network, then restore model.net to be the bbox-only network
        model.keypoint_net, keypoint_blob_out = c2_utils.SuffixNet(
            'keypoint_net', model.net, len(bbox_net.op), blob_keypoint
        )
        model.net._net = bbox_net
        loss_gradients = None
    else:
        loss_gradients = keypoint_rcnn_heads.add_keypoint_losses(model)
    return loss_gradients