acc_GBDT[n, 1], _ = test_GBDT(model, x_test_0, y_test_0)
            acc_GBDT[n, 2], _ = test_GBDT(model, x_test_1, y_test_1)
            acc_GBDT[n, 3], _ = test_GBDT(model, x_test_2, y_test_2)
        else:
            history = model.fit(x_train,
                                y_train,
                                batch_size=32,
                                epochs=30,
                                validation_split=0.2)
            if baseline == 'ResNet':
                acc_ResNet[n, 0], _ = test_CNN(model, x_test, y_test)
                acc_ResNet[n, 1], indics_0 = test_CNN(model, x_test_0,
                                                      y_test_0)
                acc_ResNet[n, 2], indics_1 = test_CNN(model, x_test_1,
                                                      y_test_1)
                acc_ResNet[n, 3], indics_2 = test_CNN(model, x_test_2,
                                                      y_test_2)
                model.save('./results/ResNet_aug_ObjectVariation')
            elif baseline == 'CWT+ResNet':
                acc_CWT[n, 0], _ = test_CNN(model, x_test, y_test)
                acc_CWT[n, 1], _ = test_CNN(model, x_test_0, y_test_0)
                acc_CWT[n, 2], _ = test_CNN(model, x_test_1, y_test_1)
                acc_CWT[n, 3], _ = test_CNN(model, x_test_2, y_test_2)
                # model.save('./results/CWTResNet_aug_ObjectVariation')
            elif baseline == 'HT+ResNet':
                acc_HT[n, 0], _ = test_CNN(model, x_test, y_test)
                acc_HT[n, 1], _ = test_CNN(model, x_test_0, y_test_0)
                acc_HT[n, 2], _ = test_CNN(model, x_test_1, y_test_1)
                acc_HT[n, 3], _ = test_CNN(model, x_test_2, y_test_2)
        rs_init += np.random.randint(1, 50)
            acc_GBDT[n, 1], _ = test_GBDT(model, x_test_0, y_test_0)
            acc_GBDT[n, 2], _ = test_GBDT(model, x_test_1, y_test_1)
            acc_GBDT[n, 3], _ = test_GBDT(model, x_test_2, y_test_2)
            acc_GBDT[n, 4], _ = test_GBDT(model, x_test_3, y_test_3)
        else:
            history = model.fit(x_train,
                                y_train,
                                batch_size=32,
                                epochs=30,
                                validation_split=0.2)
            if baseline == 'ResNet':
                acc_ResNet[n, 0], _ = test_CNN(model, x_test, y_test)
                acc_ResNet[n, 1], _ = test_CNN(model, x_test_0, y_test_0)
                acc_ResNet[n, 2], _ = test_CNN(model, x_test_1, y_test_1)
                acc_ResNet[n, 3], _ = test_CNN(model, x_test_2, y_test_2)
                acc_ResNet[n, 4], _ = test_CNN(model, x_test_3, y_test_3)
            elif baseline == 'CWT+ResNet':
                acc_CWT[n, 0], _ = test_CNN(model, x_test, y_test)
                acc_CWT[n, 1], _ = test_CNN(model, x_test_0, y_test_0)
                acc_CWT[n, 2], _ = test_CNN(model, x_test_1, y_test_1)
                acc_CWT[n, 3], _ = test_CNN(model, x_test_2, y_test_2)
                acc_CWT[n, 4], _ = test_CNN(model, x_test_3, y_test_3)
            elif baseline == 'HT+ResNet':
                acc_HT[n, 0], _ = test_CNN(model, x_test, y_test)
                acc_HT[n, 1], _ = test_CNN(model, x_test_0, y_test_0)
                acc_HT[n, 2], _ = test_CNN(model, x_test_1, y_test_1)
                acc_HT[n, 3], _ = test_CNN(model, x_test_2, y_test_2)
                acc_HT[n, 4], _ = test_CNN(model, x_test_3, y_test_3)
                model.save('./results/HTResNet_aug_InterferenceVariation')
        rs_init += np.random.randint(1, 50)