Exemplo n.º 1
0
                                            shuffle=False,
                                            num_workers=args.workers
                                            )

        if args.model in ['VGG11_bn', 'ResNet18', 'DenseNet3_40', 'LeNet', 'VGG11']:
            model = Network().construct(args.model, config)
        else:
            raise Exception('Unknown model: {}'.format())

        model = model.to(device)
        if args.dp:
            model = nn.DataParallel(model, args.dp)
            
        criterion = nn.CrossEntropyLoss()

        optimizer = optim.SGD(model.parameters(), lr=args.learning_rate, momentum=args.mom, weight_decay=args.weight_decay)
        scheduler = lr_scheduler.MultiStepLR(optimizer, milestones=args.milestones, gamma=args.lr_gamma)
        acc_list = train(model,
                    optimizer,
                    scheduler,
                    dataloaders,
                    criterion,
                    device,
                    config.num_classes,
                    num_epochs=args.num_epochs,
                    args=args,
                    ckpt_dir=ckpt_dir,
                    dataset_sizes=dataset_sizes,
                    images_dir=images_dir
                    )
        train_test_stats.append(acc_list)
Exemplo n.º 2
0
    # if args.model in ['VGG11', 'VGG11_bn', 'VGG13', 'VGG13_bn', 'VGG16', 'VGG16_bn', 'VGG19', 'VGG19_bn', 'ResNet18', 'DenseNet3_40', 'LeNet', 'MobileNet', 'FullyConnected']:
    if args.model in model_choices:
        model = Network().construct(args.model, config)
    else:
        raise Exception('Unknown model: {}'.format())

    model = model.to(device)

    if args.loss == 'ce':
        criterion = nn.CrossEntropyLoss()
    else:
        raise Exception('Only cross entropy is allowed: {}'.format(args.loss))

    if args.optimizer == 'sgd':
        optimizer = optim.SGD(model.parameters(),
                              lr=args.learning_rate,
                              weight_decay=args.weight_decay,
                              momentum=0.9)
    elif args.optimizer == 'adam':
        optimizer = optim.Adam(model.parameters(),
                               lr=args.learning_rate,
                               weight_decay=args.weight_decay)
    else:
        raise Exception('Optimizer not allowed: {}'.format(args.optimizer))

    scheduler = lr_scheduler.MultiStepLR(optimizer,
                                         args.milestones,
                                         gamma=args.step_gamma)

    if args.resume is not None:
Exemplo n.º 3
0
    # if args.model in ['VGG11', 'VGG11_bn', 'VGG13', 'VGG13_bn', 'VGG16', 'VGG16_bn', 'VGG19', 'VGG19_bn', 'ResNet18', 'DenseNet3_40', 'LeNet', 'MobileNet', 'FullyConnected']:
    if args.model in model_choices:
        model = Network().construct(args.model, config)
    else:
        raise Exception('Unknown model: {}'.format())

    model = model.to(device)

    if args.loss == 'ce':
        criterion = nn.CrossEntropyLoss()
    else:
        raise Exception('Only cross entropy is allowed: {}'.format(args.loss))

    if args.optimizer == 'sgd':
        optimizer = optim.SGD(model.parameters(), lr=args.learning_rate, weight_decay=args.weight_decay, momentum=0.9)
    elif args.optimizer == 'adam':
        optimizer = optim.Adam(model.parameters(), lr=args.learning_rate, weight_decay=args.weight_decay)
    else:
        raise Exception('Optimizer not allowed: {}'.format(args.optimizer))
        
    scheduler = lr_scheduler.MultiStepLR(optimizer, args.milestones, gamma=args.step_gamma)

    if args.resume is not None:
        assert osp.exists(args.resume)
        assert osp.isfile(args.resume)
        ckpt = torch.load(args.resume)
        assert 'model' in ckpt.keys()
        model.load_state_dict(ckpt['model'], strict=True)

    system = train(model,