Exemplo n.º 1
0
    def __init__(self, embedding_dim, hidden_dim, vocab_size, tagset_size, labelset_size, pad_token_idx, bidirectional=True, num_layers=1, dropout=0., device=None):
        """Initialize model."""
        super(LSTMTagger_CRF, self).__init__()
        self.embedding_dim = embedding_dim
        self.hidden_dim = hidden_dim
        self.vocab_size = vocab_size
        self.tagset_size = tagset_size
        self.labelset_size = labelset_size
        self.pad_token_idx = pad_token_idx
        self.bidirectional = bidirectional
        self.num_layers = num_layers
        self.dropout = dropout
        self.device = device

        self.num_directions = 2 if self.bidirectional else 1

        self.word_embeddings = nn.Embedding(self.vocab_size, self.embedding_dim, self.pad_token_idx)

        self.dropout_layer = nn.Dropout(p=self.dropout)
        # The LSTM takes word embeddings as inputs, and outputs hidden states
        # with dimensionality hidden_dim.
        self.lstm = nn.LSTM(self.embedding_dim, self.hidden_dim, num_layers=self.num_layers, bidirectional=self.bidirectional, batch_first=True, dropout=self.dropout)

        # The linear layer that maps from hidden state space to tag space
        self.hidden2tag = nn.Linear(self.num_directions * self.hidden_dim, self.tagset_size + 2)

        self.crf_layer = crf.CRF(self.tagset_size, self.device)
        #self.init_weights()
        self.intent_layer = intent.Intent(self.hidden_dim*self.num_directions, self.labelset_size, self.device)
Exemplo n.º 2
0
    def __init__(self, config, embedding, word2Idx, label2Idx, char2Idx,
                 description, exemplar):
        super(Bilstm_LabelEmbedding, self).__init__()

        self.embed_size = config.embed_size
        self.max_char_len = config.max_char_len
        self.hidden_size = config.hidden_size
        self.num_layers = config.num_layers
        self.Bidirectional = config.bidirectional
        self.lstm_dropout = config.lstm_dropout
        self.dropout_rate = config.dropout
        self.use_charEmbedding = config.use_charEmbedding
        self.use_crf = config.crf
        self.device = config.device
        self.word2Idx = word2Idx
        self.char2Idx = char2Idx
        self.label2Idx = label2Idx
        self.embedding = embedding
        self.description = description
        self.exemplar = exemplar
        self.label2Idx = label2Idx
        self.config = config

        self.TokenEmbedding = nn.Embedding.from_pretrained(
            torch.from_numpy(embedding.astype(np.float32)),
            padding_idx=word2Idx['<PAD>'])
        self.charemb = None
        if self.use_charEmbedding:
            self.charemb = charEmbedding(eval(config.conv_filter_sizes),
                                         eval(config.conv_filter_nums),
                                         char2Idx, config.char_emb_size,
                                         self.device)

        self.LabelEmbedding = self.init_LabelEmbedding(sz=(3, 1206))
        LSTMDim = self.embed_size
        if self.use_charEmbedding:
            LSTMDim += sum(self.charemb.conv_filter_nums)
        self.Lstm = nn.LSTM(input_size=LSTMDim,
                            dropout=self.lstm_dropout,
                            hidden_size=self.hidden_size,
                            num_layers=self.num_layers,
                            bias=True,
                            batch_first=True,
                            bidirectional=self.Bidirectional)
        self.h_projection = nn.Linear(
            2 * self.hidden_size if self.Bidirectional else self.hidden_size,
            self.LabelEmbedding.size(1),
            bias=True)

        self.dropout = nn.Dropout(self.dropout_rate)

        self.crf = None
        if self.use_crf:
            self.crf = crf.CRF(labelEmbedding=self.LabelEmbedding,
                               num_tags=self.LabelEmbedding.size(0),
                               batch_first=True)
    def __init__(self,
                 pretrained_model_type,
                 pretrained_model,
                 tagset_size,
                 class_size,
                 dropout=0.,
                 device=None,
                 extFeats_dim=None,
                 multi_class=False,
                 task_st='NN',
                 task_sc='CLS'):
        """Initialize model."""
        super(Transformers_joint_slot_and_intent, self).__init__()
        self.tagset_size = tagset_size
        self.class_size = class_size
        self.dropout = dropout
        self.device = device
        self.extFeats_dim = extFeats_dim
        self.multi_class = multi_class
        self.task_st = task_st  # 'NN', 'NN_crf'
        self.task_sc = task_sc  # None, 'CLS', 'max', 'CLS_max'

        self.dropout_layer = nn.Dropout(p=self.dropout)

        self.pretrained_model_type = pretrained_model_type
        self.pretrained_model = pretrained_model
        if self.pretrained_model_type == 'xlnet':
            self.sequence_summary = SequenceSummary(
                self.pretrained_model.config)
        self.embedding_dim = self.pretrained_model.config.hidden_size

        # The LSTM takes word embeddings as inputs, and outputs hidden states
        self.append_feature_dim = 0
        if self.extFeats_dim:
            self.append_feature_dim += self.extFeats_dim
            self.extFeats_linear = nn.Linear(self.append_feature_dim,
                                             self.append_feature_dim)
        else:
            self.extFeats_linear = None

        # The linear layer that maps from hidden state space to tag space
        if self.task_st == 'NN':
            self.hidden2tag = nn.Linear(
                self.embedding_dim + self.append_feature_dim, self.tagset_size)
        else:
            self.hidden2tag = nn.Linear(
                self.embedding_dim + self.append_feature_dim,
                self.tagset_size + 2)
            self.crf_layer = crf.CRF(self.tagset_size, self.device)
        if self.task_sc == 'CLS' or self.task_sc == 'max':
            self.hidden2class = nn.Linear(self.embedding_dim, self.class_size)
        elif self.task_sc == 'CLS_max':
            self.hidden2class = nn.Linear(self.embedding_dim * 2,
                                          self.class_size)
        else:
            pass
    def __init__(self, embedding_dim, hidden_dim, vocab_size, tagset_size, bidirectional=True, num_layers=1, dropout=0., device=None, extFeats_dim=None, elmo_model=None, bert_model=None, fix_bert_model=False):
        """Initialize model."""
        super(LSTMTagger_CRF, self).__init__()
        self.embedding_dim = embedding_dim
        self.hidden_dim = hidden_dim
        self.vocab_size = vocab_size
        self.tagset_size = tagset_size
        #self.pad_token_idxs = pad_token_idxs
        self.bidirectional = bidirectional
        self.num_layers = num_layers
        self.dropout = dropout
        self.device = device
        self.extFeats_dim = extFeats_dim

        self.num_directions = 2 if self.bidirectional else 1
        self.dropout_layer = nn.Dropout(p=self.dropout)

        self.elmo_model = elmo_model
        self.bert_model = bert_model
        self.fix_bert_model = fix_bert_model
        if self.fix_bert_model:
            self.number_of_last_hiddens_of_bert = 4
            self.weighted_scores_of_last_hiddens = nn.Linear(self.number_of_last_hiddens_of_bert, 1, bias=False)
            for weight in self.bert_model.parameters():
                weight.requires_grad = False
        else:
            self.number_of_last_hiddens_of_bert = 1
        if self.elmo_model and self.bert_model:
            self.embedding_dim = self.elmo_model.get_output_dim() + self.bert_model.config.hidden_size
        elif self.elmo_model:
            self.embedding_dim = self.elmo_model.get_output_dim()
        elif self.bert_model:
            self.embedding_dim = self.bert_model.config.hidden_size
        else:
            self.word_embeddings = nn.Embedding(self.vocab_size, self.embedding_dim)

        # The LSTM takes word embeddings as inputs, and outputs hidden states
        self.append_feature_dim = 0
        if self.extFeats_dim:
            self.append_feature_dim += self.extFeats_dim
            self.extFeats_linear = nn.Linear(self.append_feature_dim, self.append_feature_dim)
        else:
            self.extFeats_linear = None

        # with dimensionality hidden_dim.
        self.lstm = nn.LSTM(self.embedding_dim + self.append_feature_dim, self.hidden_dim, num_layers=self.num_layers, bidirectional=self.bidirectional, batch_first=True, dropout=self.dropout)
        
        # The linear layer that maps from hidden state space to tag space
        self.hidden2tag = nn.Linear(self.num_directions * self.hidden_dim, self.tagset_size + 2)

        self.crf_layer = crf.CRF(self.tagset_size, self.device)
    def __init__(self,
                 bert_model,
                 tagset_size,
                 class_size,
                 dropout=0.,
                 device=None,
                 extFeats_dim=None,
                 multi_class=False,
                 task_st='NN',
                 task_sc='CLS'):
        """Initialize model."""
        super(BERT_joint_slot_and_intent, self).__init__()
        self.tagset_size = tagset_size
        self.class_size = class_size
        self.dropout = dropout
        self.device = device
        self.extFeats_dim = extFeats_dim
        self.multi_class = multi_class
        self.task_st = task_st  # NN, NN_crf
        self.task_sc = task_sc  # CLS, max, CLS_max

        self.dropout_layer = nn.Dropout(p=self.dropout)

        self.bert_model = bert_model
        self.embedding_dim = self.bert_model.config.hidden_size

        # The LSTM takes word embeddings as inputs, and outputs hidden states
        self.append_feature_dim = 0
        if self.extFeats_dim:
            self.append_feature_dim += self.extFeats_dim
            self.extFeats_linear = nn.Linear(self.append_feature_dim,
                                             self.append_feature_dim)
        else:
            self.extFeats_linear = None

        # The linear layer that maps from hidden state space to tag space
        if self.task_st == 'NN':
            self.hidden2tag = nn.Linear(
                self.embedding_dim + self.append_feature_dim, self.tagset_size)
        else:
            self.hidden2tag = nn.Linear(
                self.embedding_dim + self.append_feature_dim,
                self.tagset_size + 2)
            self.crf_layer = crf.CRF(self.tagset_size, self.device)
        if self.task_sc == 'CLS' or self.task_sc == 'max':
            self.hidden2class = nn.Linear(self.embedding_dim, self.class_size)
        else:
            self.hidden2class = nn.Linear(self.embedding_dim * 2,
                                          self.class_size)
Exemplo n.º 6
0
    def __init__(self,
                 embedding_dim,
                 max_sen_len,
                 sen_size,
                 hidden_dim,
                 tagset_size,
                 bidirectional=True,
                 num_layers=1,
                 dropout=0.,
                 device=None):
        """Initialize model."""
        super(LSTMTagger_CRF_sen_level, self).__init__()

        print('embedding: %s, max_sen_len: %s, sen_size: %s' %
              (embedding_dim, max_sen_len, sen_size))
        self.embedding_dim = embedding_dim
        self.sen_size = sen_size
        self.max_sen_len = max_sen_len
        self.hidden_dim = hidden_dim
        self.tagset_size = tagset_size
        #self.pad_token_idxs = pad_token_idxs
        self.bidirectional = bidirectional
        self.num_layers = num_layers
        self.dropout = dropout
        self.device = device

        self.num_directions = 2 if self.bidirectional else 1
        self.dropout_layer = nn.Dropout(p=self.dropout)

        self.sen_embeddings = nn.Embedding(
            self.sen_size, self.embedding_dim * self.max_sen_len)

        # The LSTM takes word embeddings as inputs, and outputs hidden states

        # with dimensionality hidden_dim.
        self.lstm = nn.LSTM(self.embedding_dim,
                            self.hidden_dim,
                            num_layers=self.num_layers,
                            bidirectional=self.bidirectional,
                            batch_first=True,
                            dropout=self.dropout)

        # The linear layer that maps from hidden state space to tag space
        self.hidden2tag = nn.Linear(self.num_directions * self.hidden_dim,
                                    self.tagset_size + 2)

        self.crf_layer = crf.CRF(self.tagset_size, self.device)