def transfer2tf_minst(modelName):
    datatype = "mnist"
    modelPath = "../build-in-resource/pretrained-model/" + "/" + datatype + "/" + +modelName + ".pkl"
    tmp_to_save = os.path.join("./", "parameter_" + modelName + ".pkl")
    if modelName == "googlenet":
        seed_model = GoogLeNet()
    elif modelName == "lenet":
        seed_model = MnistNet4()
    seed_model.load_state_dict(torch.load(modelPath))
    parameters, ordered_keys = extract_parametes_pytorch(seed_model)
    with open(tmp_to_save, "w") as f:
        pickle.dump({"parameters": parameters, "ordered_keys": ordered_keys}, f)
Exemplo n.º 2
0
    def build_model(self):

        import theano
        theano.config.on_unused_input = 'warn'

        if self.model_name == 'googlenet':
            from models.googlenet import GoogLeNet
            self.model = GoogLeNet(self.config)

        elif self.model_name == 'alexnet':
            from models.alex_net import AlexNet
            self.model = AlexNet(self.config)

        elif self.model_name == 'vggnet':

            if self.config['pretrain']:
                from models.vggnet_11_shallow import VGGNet_11 as VGGNet
            else:
                if self.config['source'] == 'lasagne':
                    from models.lasagne_model_zoo.vgg import VGG as VGGNet
                elif self.config['source'] == 'Theano-MPI':
                    from models.vggnet_16 import VGGNet_16 as VGGNet
                else:
                    raise NotImplementedError

            self.model = VGGNet(self.config)

        elif self.model_name == 'customized':
            from models.customized import Customized
            self.model = Customized(self.config)

        else:
            raise NotImplementedError("wrong model name")

        self.model.img_mean = self.data[4]
Exemplo n.º 3
0
def get_net(network: str, num_classes) -> torch.nn.Module:
    return VGG('VGG16', num_classes=num_classes) if network == 'VGG16' else \
        ResNet34(num_classes=num_classes) if network == 'ResNet34' else \
        PreActResNet18(num_classes=num_classes) if network == 'PreActResNet18' else \
        GoogLeNet(num_classes=num_classes) if network == 'GoogLeNet' else \
        densenet_cifar(num_classes=num_classes) if network == 'densenet_cifar' else \
        ResNeXt29_2x64d(num_classes=num_classes) if network == 'ResNeXt29_2x64d' else \
        MobileNet(num_classes=num_classes) if network == 'MobileNet' else \
        MobileNetV2(num_classes=num_classes) if network == 'MobileNetV2' else \
        DPN92(num_classes=num_classes) if network == 'DPN92' else \
        ShuffleNetG2(num_classes=num_classes) if network == 'ShuffleNetG2' else \
        SENet18(num_classes=num_classes) if network == 'SENet18' else \
        ShuffleNetV2(1, num_classes=num_classes) if network == 'ShuffleNetV2' else \
        EfficientNetB0(
            num_classes=num_classes) if network == 'EfficientNetB0' else None
 def __init__(self,
              threshold,
              sigma,
              beta,
              alpha,
              seed_name,
              max_mutated_numbers,
              data_type,
              device='cpu',
              models_folder=None):
     self.threshold = threshold
     self.sigma = sigma
     self.beta = beta
     self.alpha = alpha
     self.device = device
     self.data_type = data_type
     self.models_folder = models_folder
     self.seed_name = seed_name
     self.max_mutated_numbers = max_mutated_numbers
     self.start_no = 1
     self.seed_model_shell = GoogLeNet(
     ) if seed_name == "googlenet" else MnistNet4()
     if data_type == DATA_MNIST:
         self.max_models_in_memory = self.max_mutated_numbers
         self.mutated_models = fetch_models(models_folder,
                                            self.max_models_in_memory,
                                            self.device,
                                            self.seed_model_shell,
                                            start_no=self.start_no)
     else:
         self.max_models_in_memory = 20
         self.mutated_models = fetch_models(models_folder,
                                            self.max_models_in_memory,
                                            self.device,
                                            self.seed_model_shell,
                                            start_no=self.start_no)
         self.start_no += self.max_models_in_memory
Exemplo n.º 5
0
def test_adv_samples():
    parser = argparse.ArgumentParser("Test Adversarial samples")
    parser.add_argument("--dataType", type=int,
                        help="The data set that the given model is tailored to. Three types are available: mnist,0; "
                             "cifar10, 1", default=0, required=True)
    parser.add_argument("--filePath", type=str,
                        help="The path of samples to be tested", required=True)

    parser.add_argument("--device", type=int,
                        help="The index of GPU used. If -1 is assigned,then only cpu is available",
                        required=True)

    parser.add_argument("--advGround", type=int,
                        help="1,if use adversarial label as ground truth;0,otherwise",
                        required=True)

    args = parser.parse_args()
    use_adv_ground = True if args.advGround == 1 else False
    device = "cuda:" + str(args.device) if args.device >= 0 else "cpu"

    if args.dataType == DATA_CIFAR10:
        data_name = 'cifar10'
        dim_features = 3 * 32 * 32
        num_out = 10
        img_shape = {'C': 3, 'H': 32, 'W': 32}
        model = GoogLeNet()
        modelPath = "../build-in-resource/pretrained-model/googlenet.pkl"
        normalize = normalize_cifar10
        img_mode = None
    elif args.dataType == DATA_MNIST:
        data_name = 'mnist'
        dim_features = 28 * 28
        num_out = 10
        img_shape = {'C': 1, 'H': 28, 'W': 28}
        model = MnistNet4()
        normalize = normalize_mnist
        modelPath = "../build-in-resource/pretrained-model/lenet.pkl"
        img_mode = "L"
    else:
        raise Exception("{} data set is not supported".format(args.dataType))
    model.load_state_dict(torch.load(modelPath))
    model = model.to(device)
    model.eval()
    dataset = MyDataset(root=args.filePath, transform=transforms.Compose([
        transforms.ToTensor(),
        normalize
    ]), show_file_name=True, img_mode=img_mode, max_size=10000)
    dataLoader = DataLoader(dataset, batch_size=1, shuffle=False)

    correct = 0
    for data_tuple in dataLoader:
        data, target, adv_label, file_name = data_tuple
        if use_adv_ground:
            target = adv_label
        data, target = data.to(device), target.to(device)
        output = model(data)
        pred = output.data.max(1, keepdim=True)[1]
        rst = pred.eq(target).sum().item()
        correct += rst
        print("{},Adversarial Label:{},Current Predict Label:{}").format(file_name, adv_label.item(), pred.item())
    print("Total:{},Success:{}".format(len(dataLoader), correct))
Exemplo n.º 6
0
def run():
    parser = argparse.ArgumentParser("Prarameters for Detection")
    parser.add_argument(
        "--threshold",
        type=float,
        help=
        "The lcr_auc of normal samples. The value is equal to: avg+99%confidence.",
        required=True)
    parser.add_argument("--extendScale",
                        type=float,
                        help="The scale to extend the thrshold",
                        required=True)
    parser.add_argument(
        "--relaxScale",
        type=float,
        help=
        "The proportion of threhold,which is useed to control the scale of indifference region",
        required=True)
    parser.add_argument("--mutatedModelsPath",
                        type=str,
                        help="The path where the pre-mutated models are",
                        required=True)
    parser.add_argument("--alpha",
                        type=float,
                        help="probability od Type-I error",
                        required=True)
    parser.add_argument("--beta",
                        type=float,
                        help="probability od Type-2 error",
                        required=True)
    parser.add_argument("--testSamplesPath",
                        type=str,
                        help="The path where the samples to be tested are")
    parser.add_argument(
        "--dataType",
        type=int,
        help=
        "The data set that the given model is tailored to. Three types are available: mnist,0; "
        "cifar10, 1",
        default=0,
        required=True)
    parser.add_argument(
        "--testType",
        type=str,
        help=
        "Tree types are available: [adv], advesarial data; [normal], test on normal data; [wl],test on wrong labeled data",
        required=True)
    parser.add_argument("--seedModelPath",
                        type=str,
                        help="the path of the targeted model",
                        required=True)
    parser.add_argument(
        "--device",
        type=int,
        help=
        "The index of GPU used. If -1 is assigned,then only cpu is available",
        required=True)

    args = parser.parse_args()
    threshold, sigma = get_threshold_relax(args.threshold, args.extendScale,
                                           args.relaxScale)
    device = "cuda:" + str(args.device) if args.device >= 0 else "cpu"
    seed_model_name = "googlenet" if args.dataType == DATA_CIFAR10 else "lenet"
    seed_model = GoogLeNet() if args.dataType == DATA_CIFAR10 else MnistNet4()

    if args.testType == "normal":
        data_loader = get_data_loader(args.testSamplesPath,
                                      is_adv_data=False,
                                      data_type=args.dataType)
        avg_accuracy, avg_mutated_used = main('normal',
                                              data_loader,
                                              args.mutatedModelsPath,
                                              seed_model_name,
                                              threshold,
                                              sigma,
                                              'normal',
                                              device=device,
                                              data_type=args.dataType)
    elif args.testType == "wl":
        seed_model.load_state_dict(torch.load(args.seedModelPath))
        data_loader = get_wrong_label_data_loader(args.testSamplesPath,
                                                  seed_model,
                                                  args.dataType,
                                                  device=device)
        avg_accuracy, avg_mutated_used = main('adv',
                                              data_loader,
                                              args.mutatedModelsPath,
                                              seed_model_name,
                                              threshold,
                                              sigma,
                                              'wl',
                                              device=device,
                                              data_type=args.dataType)
    elif args.testType == "adv":
        data_loader = get_data_loader(args.testSamplesPath,
                                      is_adv_data=True,
                                      data_type=args.dataType)
        avg_accuracy, avg_mutated_used = main('adv',
                                              data_loader,
                                              args.mutatedModelsPath,
                                              seed_model_name,
                                              threshold,
                                              sigma,
                                              "adv",
                                              device=device,
                                              data_type=args.dataType)
    else:
        raise Exception("Unsupported test type.")

    print("average accuracy:{}, average mutants used:{}".format(
        avg_accuracy, avg_mutated_used))
Exemplo n.º 7
0
def get_network(name: str, num_classes: int) -> None:
    return \
        AlexNet(
            num_classes=num_classes) if name == 'AlexNet' else\
        DenseNet201(
            num_classes=num_classes) if name == 'DenseNet201' else\
        DenseNet169(
            num_classes=num_classes) if name == 'DenseNet169' else\
        DenseNet161(
            num_classes=num_classes) if name == 'DenseNet161' else\
        DenseNet121(
            num_classes=num_classes) if name == 'DenseNet121' else\
        DenseNet121CIFAR(
            num_classes=num_classes) if name == 'DenseNet121CIFAR' else\
        GoogLeNet(
            num_classes=num_classes) if name == 'GoogLeNet' else\
        InceptionV3(
            num_classes=num_classes) if name == 'InceptionV3' else\
        MNASNet_0_5(
            num_classes=num_classes) if name == 'MNASNet_0_5' else\
        MNASNet_0_75(
            num_classes=num_classes) if name == 'MNASNet_0_75' else\
        MNASNet_1(
            num_classes=num_classes) if name == 'MNASNet_1' else\
        MNASNet_1_3(
            num_classes=num_classes) if name == 'MNASNet_1_3' else\
        MobileNetV2(
            num_classes=num_classes) if name == 'MobileNetV2' else\
        ResNet18(
            num_classes=num_classes) if name == 'ResNet18' else\
        ResNet34(
            num_classes=num_classes) if name == 'ResNet34' else\
        ResNet34CIFAR(
            num_classes=num_classes) if name == 'ResNet34CIFAR' else\
        ResNet50CIFAR(
            num_classes=num_classes) if name == 'ResNet50CIFAR' else\
        ResNet101CIFAR(
            num_classes=num_classes) if name == 'ResNet101CIFAR' else\
        ResNet18CIFAR(
            num_classes=num_classes) if name == 'ResNet18CIFAR' else\
        ResNet50(
            num_classes=num_classes) if name == 'ResNet50' else\
        ResNet101(
            num_classes=num_classes) if name == 'ResNet101' else\
        ResNet152(
            num_classes=num_classes) if name == 'ResNet152' else\
        ResNeXt50(
            num_classes=num_classes) if name == 'ResNext50' else\
        ResNeXtCIFAR(
            num_classes=num_classes) if name == 'ResNeXtCIFAR' else\
        ResNeXt101(
            num_classes=num_classes) if name == 'ResNext101' else\
        WideResNet50(
            num_classes=num_classes) if name == 'WideResNet50' else\
        WideResNet101(
            num_classes=num_classes) if name == 'WideResNet101' else\
        ShuffleNetV2_0_5(
            num_classes=num_classes) if name == 'ShuffleNetV2_0_5' else\
        ShuffleNetV2_1(
            num_classes=num_classes) if name == 'ShuffleNetV2_1' else\
        ShuffleNetV2_1_5(
            num_classes=num_classes) if name == 'ShuffleNetV2_1_5' else\
        ShuffleNetV2_2(
            num_classes=num_classes) if name == 'ShuffleNetV2_2' else\
        SqueezeNet_1(
            num_classes=num_classes) if name == 'SqueezeNet_1' else\
        SqueezeNet_1_1(
            num_classes=num_classes) if name == 'SqueezeNet_1_1' else\
        VGG11(
            num_classes=num_classes) if name == 'VGG11' else\
        VGG11_BN(
            num_classes=num_classes) if name == 'VGG11_BN' else\
        VGG13(
            num_classes=num_classes) if name == 'VGG13' else\
        VGG13_BN(
            num_classes=num_classes) if name == 'VGG13_BN' else\
        VGG16(
            num_classes=num_classes) if name == 'VGG16' else\
        VGG16_BN(
            num_classes=num_classes) if name == 'VGG16_BN' else\
        VGG19(
            num_classes=num_classes) if name == 'VGG19' else\
        VGG19_BN(
            num_classes=num_classes) if name == 'VGG19_BN' else \
        VGGCIFAR('VGG16',
                 num_classes=num_classes) if name == 'VGG16CIFAR' else \
        EfficientNetB4(
            num_classes=num_classes) if name == 'EfficientNetB4' else \
        EfficientNetB0CIFAR(
            num_classes=num_classes) if name == 'EfficientNetB0CIFAR' else\
        None
Exemplo n.º 8
0
            trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform_train)
            trainloader = torch.utils.data.DataLoader(trainset, batch_size=64, shuffle=True, num_workers=4)

            testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform_test)
            testloader = torch.utils.data.DataLoader(testset, batch_size=50, shuffle=False, num_workers=4)

            classes = ('plane', 'car', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck')

            # Model
            print('==> Building model..')
            if cnet == 'vgg':
                net = VGG('VGG19')
            elif cnet == 'resnet':
                net = ResNet18()
            elif cnet == 'googlenet':
                net = GoogLeNet()
            # net = PreActResNet18()
            # net = GoogLeNet()
            # net = DenseNet121()
            # net = ResNeXt29_2x64d()
            # net = MobileNet()
            # net = MobileNetV2()
            # net = DPN92()
            # net = ShuffleNetG2()
            # net = SENet18()
            net = net.to(device)
            if device == 'cuda':
                net = torch.nn.DataParallel(net)
                cudnn.benchmark = True

            if args.resume: